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Abstract

3D indoor scenes are ubiquitous in computer graphics applications such as 3D games and
interior design. With the emerging applications in VR/AR, there is an increasing demand of
realistic 3D scene data. However, designing 3D indoor scenes requires proficient 3D modeling
skills and is often time-consuming. A promising solution to the content-creation bottleneck
of scenes is to utilize the existing scene data for data-driven 3D scene generation. Recent
research about data-driven indoor scene processing in computer graphics usually takes a
holistic view and operates at the object-level for scene analysis and synthesis. The main
limitation of existing methods is their applicability to characterizing and modeling complex
scenes. In this thesis, we address the problems of data-driven 3D indoor scene analysis and
synthesis via sub-scene level processing. Our goal is to improve the understanding of scene
structures through sub-scene level analysis and develop efficient systems to create complex
scenes by manipulating sub-scenes instead of individual objects.

To this end, we first introduce focal points, the representative sub-scenes, for characterizing,
comparing, and organizing collections of complex and heterogeneous data, and apply the
developed concepts and algorithms to collections of 3D indoor scenes. Then, we propose
a framework for action-driven evolution of 3D indoor scenes. Human actions learned from
annotated photographs are applied to trigger appropriate object placements at a sub-scene
level, inducing a more compact way of scene generation. Finally, we present a novel frame-
work that uses natural language to generate 3D indoor scenes. We demonstrate advantages
of focal-centric scene comparison and organization over existing approaches. We show re-
sults of our action-driven and language-driven scene synthesis that lead to realistic, messy
and complex 3D scenes, and evaluate the plausibility and naturalness of the scenes by user
studies.

Keywords: 3D indoor scenes; sub-scene processing; scene analysis; scene synthesis; data-
driven; action model; natural language processing
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Chapter 1

Introduction

3D indoor scenes composed of precise 3D CAD models are ubiquitous in computer graphics.
In 3D games, the virtual characters perform actions to explore and interact with the 3D
indoor environment. In the field of interior design, artists create 3D indoor scenes to show
their design ideas to customers. With the recent advance of the VR/AR technologies and
their emerging applications, there is an increasing demand of realistic 3D scene data. For
example, in AR, a user can view a 3D scene rendered on the online capture of the real world
environment to help with the interior design and furniture layout.

Currently, most existing 3D indoor scenes in online repositories are manually created
using general 3D modeling softwares such as 3DS Max and SketchUp, or professional indoor
scene modeling tools, e.g., Autodesk Homestyler [5], Sweet Home 3D [3], or Planner 5D [2].
A traditional modeling process includes a user iteratively inserts individual objects into the
3D scene and adjusts their locations by mouse and keyboard operations. Creating a scene
by these 3D modeling softwares often requires proficient 3D designing and modeling skills,
while designing detailed and complex 3D indoor scenes requires even more expertise and is
very time-consuming.

Data-driven indoor scene processing Comparing to manually designing the 3D indoor
scenes, a promising solution to address the content-creation bottleneck of indoor scenes
is to use the existing scene data for data-driven scene generation. Current online scene
repositories usually contain large-scale and heterogeneous scene collections, such as 3D
Warehouse [1]. To utilize scenes in these databases, one problem is to efficiently organize and
explore a collection of scenes so that we could have a better understanding of the structure of
the scene collection and quickly find the relevant scenes for data-driven scene creation. The
other problem is to develop efficient algorithms that learn and apply knowledge from scene
databases to generate realistic and complex scenes for graphics and VR/AR applications.
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1.1 Sub-scene level indoor scene processing

This thesis address the above two problems of data-driven indoor scene processing by per-
forming sub-scene level analysis and synthesis of 3D indoor scenes. Our goal is to improve
the understanding of scene structures through sub-scene level analysis and develop efficient
systems to create complex scenes by manipulating sub-scenes instead of individual objects.

Why using sub-scenes? There is substantial amount of recent work in graphics on ge-
ometry and structure analysis of 3D indoor scenes and synthesis of plausible and novel
scenes using the data-driven approach. However, existing methods usually take a holistic
view and operate at the object-level for scene analysis [23] and synthesis [22, 12]. As a result,
they cannot achieve satisfied performance on characterizing and modeling complex scenes.
In contrast, our scene processing at the sub-scene level is more flexible and could provide
more comprehensive scene characterization and produce more complex scene synthesis re-
sults. Moreover, the sub-scenes we work with are related to the functional substructures
of scenes. For example, our scene synthesis discovers the functional substructure like a
bed with two nightstands as a representative sub-scene for the bedrooms; our synthesis
utilizes sub-scenes involved with human actions to generate functionally plausible results.
Scene analysis and synthesis using such sub-scenes allow us to perform function-aware scene
processing.

Scene analysis. The goal of scene analysis is to process the existing 3D scenes in the
databases and learn the knowledge and constraints that could be used for arranging objects
in new scenes, i.e., scene synthesis. To perform scene analysis, a common first step is to
convert the scene into a graph representation which captures the relationships between the
objects in the scene. Fisher et al. [23] propose to represent a scene as a relationship graph
and define a graph kernel to compare 3D scenes. By considering the geometry features and
semantic labels of objects encoded in the nodes and structural relationships encoded in the
edges, the graph kernel works well for characterizing 3D scenes and largely improves the
performance of scene retrieval.

However, as the graph kernel accumulates the similarities between every object pair
in two scenes, it takes a holistic view for scene comparison and the performance will be
reduced if the scenes are in large scale and complex, e.g., a scene with several functional
regions or belongs to multiple semantic categories. Analyzing complex and heterogeneous
data is difficult without references to certain points of attention or focus, i.e., the focal
points. For example, comparing New York City to Paris as a whole will unlikely yield
a useful answer. The comparison is a lot more meaningful if it is focused on particular
aspects of the cities, e.g., architectural style or fashion trends. For complex indoor scenes,
a scene characterization measure which focuses more on the interested regions in a scene
and operates on the sub-scene level will produce better analysis results (Figure 1.1).

2



1

Application: focal-centric scene similarity

closer

closer

Figure 1.1: Comparing complex scenes using focal points, the representative sub-scenes of
a scene collection. Given same set of scenes in the first and second row, different scene
similarities are yielded by choosing different focal points (highlighted sub-scenes).

Therefore, we propose to use focal points, the frequent sub-scenes in a scene collection to
characterize and compare complex scenes, and organize the scene collection. We develop a
co-analysis algorithm to extract the contextually representative focal points by interleaving
with frequent pattern mining and scene clustering. By applying the extracted focal points
for scene analysis, we are able to efficiently organize and explore a large scene collection
with heterogeneous scenes.

Scene synthesis. Many efforts have been made to develop algorithms for automatic scene
generation and design intelligent tools to assist interactive scene modeling. Among various
scene synthesis works, the example-based method from Fisher et al. [22] produces the most
intriguing results by applying probabilistic models for object arrangements learned from
both the example and database 3D scenes. As the object distributions are trained for the
whole scene, the example-based synthesis is only evaluated with small-scale scenes, such as
arrangements on or around an office desk. For large-scale scenes, learning the distributions
of all the objects will be intractable. Therefore, it is better to learn object distributions for
selected objects in a sub-scene, e.g., objects related to some human action or activity.

The recent work activity-centric scene synthesis [21] learns activity models which encode
the distributions of objects involved in specific activities and performs functional scene
modeling from indoor scans based on the predicted activities. The activity models offer a
more compact view of object arrangements and result in semantic reconstruction of large-
scale scenes. Instead of targeting at reconstruction or modeling from indoor scans, we
propose to use human actions to evolve a given scene. This idea is motivated by how real
life scenes are generated. When we look at the real world indoor scenes around us, they

3



Figure 1.2: Real life scenes (top-left) are generated by human actions. We take this idea
and use actions to evolve an initial 3D scene (top-right) by progressively adding objects of
sub-scenes. A continuous scene evolution sequence with realistic and messy 3D scenes are
generated (second row, from right to left).

are not static environments. The scenes evolve over time and can reach a high complexity
and messiness, driven by object movements at the sub-scene level resulting from human
actions. When generating 3D scenes, it is also natural to use an action-driven manner to
progressively create and alter arrangements of objects in sub-scenes (Figure 1.2).

We define an action model as the combination of information about human poses, object
categories and their spatial configurations which summarize the object-object and object-
human relations for the action. Applying actions to an initial scene will trigger appropriate
object placements including relocation of existing objects or insertion of new objects into
the scene, which will produce a continuous scene evolution with realistic and messy scenes
at the end.

The other notable line of work for scene synthesis is the text-to-scene generation. Gen-
erating 3D scenes from text has been a long and on-going pursuit since the pioneering work
WordsEye [13], which maps explicit scene arrangement languages to object placements in
a scene. The recent work of Chang et al. [12] improves the text-to-scene generation by
utilizing the spatial and the common sense knowledge learned from 3D scene database to
infer the unstated facts from the input text. As these systems work on arranging individual
objects based on the text, synthesizing complex scenes is tedious and difficult due to the
number of objects and the inherent ambiguity of language.

4



1

Results

There is a desk with 
two monitors.

The desk is messy. Replace the desk and

monitors.

Figure 1.3: Using natural languages, we manipulate sub-scenes to efficiently generate and
edit 3D indoor scenes in an interactive manner.

Thus, we propose to develop a text-to-scene framework that aims to create complex 3D
scenes using compact and high-level natural language commands (Figure 1.3). We focus on
language-driven scene synthesis and editing at the sub-scene level rather than the object-
level. We learn how to manipulate the sub-scenes by analyzing available 3D scenes from the
database and perform the sub-scene level modeling to improve the efficiency of text-driven
synthesis for generating complex results.

1.2 Challenges

There are several challenges of executing the idea of sub-scene level processing for both
scene analysis and synthesis. The first challenge is to extract the representative sub-scenes
as focal points from a heterogeneous scene collection and apply them for scene comparison
and organization. The second challenge is to learn the action models from appropriate
and sufficient data for the proposed action-driven scene evolution. The last challenge is to
build a mapping between the natural scene modeling language and arrangements of complex
scenes or sub-scenes for language-driven scene synthesis.

Extracting contextual focal points from heterogeneous scenes. For focal-centric
scene analysis, by representing an indoor scene by a graph of its constituent objects, we
define a focal point as a sub-scene or a substructure in a scene which corresponds to a
subgraph. However, we are not interested in all sub-scenes. To analyze and organize a
heterogeneous scene collection which contains scenes belonging to multiple categories, we
are only interested in the representative focal points in the given scene collection. For a
focal to be representative, it must occur frequently. However, extracting focal points by
frequency analysis alone is not enough. For example, chairs are likely to be found in almost
all scenes, but they can hardly be regarded as representative of any meaningful scene group,
e.g., bedrooms or living rooms.

5



Based on the above observation, a representative focal point must also be discriminative
so that it could be used for characterizing the nature of scenes, especially for the scenes
with complex structures. Moreover, the representativity is related to a notion of coherence
or compactness of the group of scenes the focal point is to represent or characterize. This
means focal points should be extracted from a group of similar scenes, i.e., a scene clustering
result. Given a scene collection, focal extraction is coupled with scene clustering, each of
which is unknown and difficult to solve without information from the other problem.

Action learning from appropriate training data. A key question facing any data-
driven approach is the choice of the data. To learn the action models for action-driven scene
generation, 3D data of human actions and human-object interactions are most directly
applicable. However, acquiring such data in large volume is costly with challenges from
reconstruction, tracking, and annotation. Annotating existing 3D scenes as in [21] is an
option, but such scenes are limited in number and variety, and they were mostly designed
without human presence or intimate connections to human actions.

One solution to this data limitation is to use the vast source of photographs of indoor
scenes with daily human activities. The Microsoft COCO (Common Objects in Context)
database [53] offers a solid baseline for our data requirement: a large number of photos with
object segmentations, labels, and text captions describing the contents, including human
actions, in each photo. Yet, to learn our action model, much information about human
poses and inter-object relations is still missing. Recovering necessary 3D action data to
drive 3D scene synthesis is a challenging problem in general.

Mapping natural language to complex scenes. Using natural language to generate
complex scenes is challenging because it is tedious and redundant to describe all the details
of the expected scenes. Instead of asking the user to provide explicit commands to affect
every single object, incorporating the implicit or common knowledge from the text input
for object arrangements will reduce the language redundancy and improve the efficiency
of scene modeling. 3D scene database provides a rich knowledge source for learning the
object relationships and the text-to-scene mapping. However, there lacks an efficient model
which summarizes the arrangement of object groups or sub-scenes w.r.t scene descriptions
in natural language. We define and build the relational models from annotated 3D scene
databases to characterize semantic relationships among objects. The main challenge is how
to represent and extract the semantic relationships from 3D scene data.

Applying the relational models is also difficult due to the ambiguity of natural language
and the missing of a canonical scene representation which connects the 3D scenes and the
scene descriptions in natural language. To enable the mapping between natural language
to 3D scenes, we propose the Semantic Scene Graph (SSG) as a uniform scene representa-
tion. The problems then become how to convert the natural language and 3D scenes into
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consistent SSGs and how to utilize the SSGs and the learned relational models to create
complex 3D scenes.

1.3 Contributions

In this thesis, we address the challenges for analysis and synthesis of 3D indoor scenes
using the sub-scene level processing. By working at the sub-scene level, we improve the
performance of scene retrieval and enable new applications for scene analysis, such as scene
organization and exploration. We also develop efficient frameworks that utilize probabilistic
models of sub-scenes for scene synthesis. Our main contributions are as follows:

• We introduce the focal points to characterize and organize complex 3D indoor scenes.
The focal-centric similarity provides new perspective for comparing complex scenes
or data in other forms.

• We present a co-analysis algorithm to extract the contextual and representative focal
points from heterogeneous scene collections.

• We propose a novel framework for action-driven scene evolution. Action models of
human-object relations are learned from annotated photographs and applied to gen-
erate continuous sequences of realistic 3D scenes.

• We develop a novel and efficient interactive system for language-driven scene synthesis.
A language-driven “retrieve-and-accommodate” scheme is adopted to manipulate sub-
scenes for progressive generation of complex scenes.

• We propose the Semantic Scene Graph as a uniform scene representation for text-
to-scene mapping and learn relational models from 3D scene databases to encode
semantic relationships of objects.

1.4 Thesis organization

This thesis is organized in the following way: in Chapter 2, we first review the background
of indoor scene analysis and synthesis, then investigate the substructure level processing of
3D objects and the related scene processing work that involves sub-scenes. In Chapter 3,
we develop a co-analysis algorithm to extract focal points from scene collections and show
results of focal-based scene organization, retrieval and exploration. In Chapter 4, we intro-
duce a novel framework of action-driven action evolution, describing how to learn action
models from photographs and how to apply the learned actions to generate continuous series
of realistic 3D scenes. In Chapter 5, we propose an interactive system for using natural lan-
guage to generate and edit 3D indoor scenes, and show results of complex scenes generated
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with compact natural language sentences. Finally, in Chapter 6, we summarize this thesis
with contributions and present several directions for future work.

Related publications. This thesis includes previously published material and a finished
work which is currently in submission. The following is a list of the papers and their
corresponding chapters:

• The survey of related work presented in Chapter 2 is based on the technical report:
Rui Ma. Analysis and Modeling of 3D Indoor Scenes. AxXiv e-prints (SFU-CMPT
TR 2017-55-3), 2017. [57]

• The focal-based scene co-analysis approach in Chapter 3 appeared in the paper: Kai
Xu, Rui Ma, Hao Zhang, Chenyang Zhu, Ariel Shamir, Daniel Cohen-Or, Hui Huang.
Organizing Heterogeneous Scene Collections through Contextual Focal Points. ACM
Transactions on Graphics, 2014. [103]

• The action-driven scene evolution framework presented in Chapter 4 appeared in the
paper: Rui Ma, Honghua Li, Changqing Zou, Zicheng Liao, Xin Tong, Hao Zhang.
Action-Driven 3D Indoor Scene Evolution. ACM Transactions on Graphics, 2016. [58]

• The language-driven scene synthesis system described in Chapter 5 appeared in the
paper: Rui Ma, Matthew Fisher, Soeren Pirk, Binh-Son Hua, Sai-Kit Yeung, Xin
Tong, Leonidas Guibas, Hao Zhang. Language-Driven Synthesis of 3D Scenes from
Scene Databases. ACM Transactions on Graphics, 2017 (in submission).

8



Chapter 2

Background

In this chapter, we first summarize recent works on analysis and synthesis of 3D indoor
scenes. Then, we review methods that exploit substructures for shape and scene processing.
Specifically, we start by introducing the graph-based scene representation and then explore
the problems and applications for scene analysis. Next, we survey various techniques for 3D
indoor scene modeling and synthesis, and study in detail the human-centric scene modeling
and text-based scene generation. Lastly, we investigate the contextual-based shape analysis
and substructure-based shape modeling as well as the related scene processing work that
involves sub-scenes.

2.1 3D scene analysis

In the following we first introduce a representative graph-based scene representation which
encodes structural relationships between objects [23]. Then, we study scene representations
that could encode complex object relationships and their applications in 3D scene analy-
sis [115, 84]. In the end, we survey techniques for co-analysis and processing of a collection
of scenes [103, 55].

Structural scene representation. The work of Fisher et al. [23] takes a 3D scene and
transforms it into a relationship graph, a representation which encodes structural relation-
ships between objects, such as support, contact or enclosure (Figure 2.1 left). The nodes of
a relationship graph correspond to meaningful objects in the scene and the edges represent
the relationship between these objects. Representing scenes as relationship graphs greatly
facilitates comparing scenes and their structures (Figure 2.1 right). A graph kernel is de-
fined for comparison of two relationship graphs: similarities between the graph nodes and
edges are computed and accumulated to produce an overall similarity of two graphs. The
limitation of graph kernel is that it compares two scenes globally. Thus, it is difficult to
disambiguate two complex scenes using the graph kernel.
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Figure 2.1: Graph-based scene representation and comparison in Fisher et al. [23]: a scene
and its representation as a relationship graph (left); comparisons of two graph walks (right).

Characterization of complex relationships. To further represent more complex re-
lationships between objects, Zhao et al. [115] propose a new relationship descriptor, Inter-
action Bisector Surface (IBS), to describe both topological relationships such as whether
an object is “wrapped in”, “linked to” or “tangled with” others, and geometric relation-
ships such as the distance between objects. Automatic construction of scene hierarchies
and content-based relationship retrieval are studied using the IBS-based measures. Sharf
et al. [84] relate object functionalities to a set of predominant motions that can be per-
formed by the object or its subparts. These motions are denoted as mobility, which defines
the specific degrees of freedom, types, axes and limits of motions. A set of sophisticated
controllers which allow semantical editing operations are defined based on the detected mo-
bilities and used for high-level scene manipulation. The complex relationships captured by
IBS and the mobility are useful to characterize and analyze scenes with complex geometry
and structures. It remains a problem of how to generate complex scenes based on such
relationships.

Consistent scene graphs. Although most of 3D scenes downloaded from online scene
databases, e.g., 3D Warehouse, are accompanied with scene graphs which are generated
during the scene design process, the graphs usually lack consistent and semantic object
segmentations and category labels. Pre-processing to consolidate the initial scene graphs
are performed in [23] so that the graph nodes represent meaningful objects, but consistent
scene hierarchies (e.g., functional groups) are not guaranteed since such information must
be inferred from multiple scenes. Liu et al. [55] develop algorithms that build a consistent
representation for the hierarchical decomposition of a scene into semantic components.
Given a collection of consistently-annotated scene graphs representing a category of scenes
(e.g., bedroom, library, classroom, etc.) as the training set, they learn a probabilistic
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hierarchical grammar that captures the scene structure and apply the learned grammar to
hierarchically segment and label novel scenes and create consistent scene graphs. As the
grammar needs to be learned from scenes of the same categories and with similar structures,
it is hard to extract the grammar from the existing online scene collections which contain
heterogeneous scenes.

2.2 3D scene modeling and synthesis

To resolve the bottleneck of content-creation for indoor scenes, many efforts have been made
in the graphics and vision communities to develop intelligent tools and methods for 3D scene
modeling and synthesis [57]. In this section, we first review suggestive tools developed for
interactive scene modeling [20, 111, 75]. Next, we study different modeling techniques for
creating 3D scenes [107, 22] and furniture layouts [110, 63]. Then, we introduce human-
centric 3D scene modeling which exploits the human-object context for scene analysis [77]
and synthesis [21, 58]. Finally, we review existing works for text-to-scene generation [17,
12, 9].

Suggestive scene modeling. Early scene modeling work by Xu et al. [106] used a set of
intuitive placement constraints such as non-interpenetration of objects and object stability
to allow the simultaneous manipulation of a large number of objects. Recent user-centric
systems have explored the interactive context-based model suggestion [20, 111, 75], by which
scene modeling could be simplified as a set of point-and-click operations in the suggestive
modeling interfaces (Figure 2.2).

SceneSuggestClu�erPale�e

Figure 2.2: Suggestive scene modeling interfaces of ClutterPalette [111] and SceneSug-
gest [75].
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To make appropriate model suggestions, different constraints are extracted from existing
database. Fisher and Hanrahan [20] learn object co-occurrences and their spatial relation-
ships from existing 3D scenes and rank each object in the database according to how well it
fits to a query box given by the user as well as its relationships to the context objects. The
ClutterPalette tool from Yu et al. [111] uses the co-occurrences of objects extracted from
the NYU Depth Dataset [88] to provide suggestions based on objects that have already been
added into the scene. The recent system SceneSuggest presented by Savva et al. [75] learns
continuous distributions of object position and orientation from existing 3D scenes [22] and
combines the priors with the context of a user specified region to suggest a list of relevant
3D models. In these works, only individual objects are suggested for scene modeling and
creating a complex scene with tens to hundreds of objects will need quite a lot of operations.

Scene modeling from X. Data-driven scene modeling or reconstruction from X has also
gained much interest lately where X could be a sketch [107], a photograph [56, 39], or indoor
scans [66, 47, 82, 14], just to name a few. In these cases, X provides inspirations and a
target for scene modeling (Figure 2.3 first row). The objects and their arrangements are
inferred from X to guide the retrieval and placement of suitable 3D objects from a model
repository (Figure 2.3 second row).

Sketch-based user interface is commonly adopted for intuitive content creation. For
sketch-based scene modeling, early works [87, 51] typically repeat the following process for
individual objects one by one: first input a 2D sketch of an object, then retrieve and place
a 3D model that best matches the input sketch. Focusing on joint processing of a set of

Inspiration X

3D Scene

Sketch 2D Image Indoor Scan

Figure 2.3: Different inspirations X (first row) are used to create 3D scenes (second row).
Scene modeling results are produced by Xu et al. [107] (left), Izadinia et al. [39] (middle)
and Kim et al. [47] (right).
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sketched objects, Xu et al. [107] present Sketch2Scene, a framework that automatically
turns a sketch inferring multiple scene objects to semantically valid, well arranged scenes
of 3D models by performing co-retrieval and co-placement of a set of relevant 3D models.

Comparing to sketches, 2D images and photographs of indoor scenes are more accessible
and contain more rich object compositions which could inspire the 3D scene modeling or
reconstruction. 2D image to scene generation is recently tackled in [56, 39]. Given a single
2D image depicting an indoor scene as the input, Liu et al. [56] reconstruct a 3D scene
in two stages: image analysis which obtains object segmentations and their 3D location
using [50]; 3D model retrieval based on matching the line drawings extracted from 2D objects
and 3D models. Using the state-of-the-art object recognition and scene understanding
algorithms, Izadinia et al. [39] present IM2CAD which automatically produces high-quality
scene modeling results on challenging photos from interior home design websites. Instead
of using handcrafted features as in [56], the IM2CAD leverages deep features trained by
convolutional neural nets (CNNs) [48] to reliably match between photographs and CAD
renderings extracted from ShapeNet [10].

Creating 3D indoor scenes as the digital replica of our living environments is a common
interest of computer vision and graphics. There has been a great deal of work on 3D indoor
scene reconstruction and modeling which takes as input one or more images or depth scans
and aims to reconstruct the captured scene geometry or semantics. To address the problem
of missing data and scanning noise from cluttered indoor scans, data-driven and model-
based approaches are proposed to learn the prior knowledge of objects from the scene or
3D model databases for semantic scene understanding and modeling [66, 47, 82, 14]. Unlike
the model-based methods which require a training phase, unsupervised methods are also
studied to use the intrinsic geometry properties [46] , the repetition of indoor objects [62],
or the physical stability of object arrangements [81], to identify and reconstruct the objects
from the indoor scans.

Recently, online scene understanding and modeling during the process of real-time scene
scanning is becoming more popular. Object retrieval from shape databases [52] and struc-
ture analysis [113] are implemented for real-time scene modeling. As detailed scene scanning
by human is laborious, especially for large indoor scenes containing numerous objects, Xu et
al. [102] propose a framework for robot-operated autonomous scene scanning or autoscan-
ning. The basic system setup is a mobile robot holding a depth camera performing real-time
scene reconstruction [67]. The autoscanning and reconstruction is object-aware, guided by
object-centric analysis which incorporates online learning to the task of object segmentation.
In the follow-up work of [104], the problem of autonomously exploring unknown objects in
a scene by robot-operated consecutive depth acquisitions is addressed. They propose a
3D Attention Model to select the next-best-views (NBVs) for depth acquisition around an
object of interest and conduct part-based recognition to tolerate occlusion.
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As these works on scene modeling from X focus on creating 3D scenes with the geometry
and semantics constrained by the inspiration X, they are not targeted at generating novel
scene arrangements. Also, due to various limitations, e.g., the complexity of the input
sketches, the intrinsic problem of 3D geometry estimation from 2D images and the quality
of the indoor scans, it is challenging to reconstruct very complex and detailed 3D scenes
from X.

Furniture-layout optimization. 3D scenes can also be generated by furniture layout
optimization [27, 63, 110] for a given room with a given set of furniture or objects. The
common problem is to automatically generate object arrangements that satisfy a set of
indoor scene layout constraints or rules. Germer and Schwarz [27] arrange a room by
procedurally placing objects constrained by manually specified room semantics and furniture
layout rules. Merrell et al. [63] present an interactive furniture layout system that assists
users by suggesting furniture arrangements that are based on interior design guidelines. The
guidelines are encoded as terms in a density function and layout suggestions are generated
by sampling this function while respecting user’s constraints. Similar to [63], the Make it
Home system of Yu et al. [110] encodes spatial relationships for furniture objects into a cost
function and automatically synthesizes furniture layouts by optimizing the function. The
difference is the spatial relationships of objects, such as relative distance and orientation as
well as support relations are learned from 3D scene exemplars instead of manual specification
in [63].

Comparing to generating layouts with fixed objects instances, the automatic open world
layout synthesis is more appealing as the goal is to generate diverse layouts with unspecified
number of objects. Yeh et al. [109] use factor graphs, a type of graphical model, to encode
complex object relationships as constraints, and propose a variant of Markove Chain Monte
Carlo (MCMC) method to sample the possible layouts. The algorithm succeeds at synthe-
sizing interior environments, such as coffee shops, with varying shapes and scales. However,
the resultant scenes are restricted with patterns that are only handcrafted in the code.

Example-based scene synthesis. In contrast to 3D scene modeling from observations,
3D scene synthesis aims to generate novel scenes with plausible object compositions and
arrangements. Given only one or a few exemplars which could be 3D scenes or images,
example-based approaches [22, 59, 114] are able to synthesize scenes that are similar to the
input, but with certain diversity (Figure 2.4).

The best known method for synthesizing realistic 3D scenes is the example-based scene
synthesis proposed by Fisher et al. [22]. Given a few user-provided examples, the system
can synthesize a diverse set of plausible new scenes by learning from a 3D scene database.
The main challenge for example-based synthesis is generating a variety of results while
retaining plausibility and similarity to the examples. Two ways are exploited in [22] to
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Result

Fisher et al. [22] Majerowicz et al. [59] Zhao et al. [114]

Figure 2.4: Different example-based scene synthesis approaches. Scenes with similar object
occurrences and relationships (left), arrangement style (middle), and complex relationships
(right) are synthesized based on the corresponding input exemplars.

improve the diversity of synthesized scenes: firstly, extract contextual categories from the
scene database by using object neighborhoods in scenes to group together objects that are
likely to be considered interchangeable; secondly, treat the scene database as a prior over
scenes and train a probabilistic model on both the examples and relevant scenes retrieved
from the database using [23]. Using the contextual categories and the mixed probabilistic
model, the algorithm successfully synthesizes scenes with a large variety of both objects and
arrangements.

Focusing on enriching scenes with more details, i.e., small objects on the shelves, Ma-
jerowicz et al. [59] present an example-based method which automatically populates empty
shelf-like surfaces with diverse arrangements of artifacts in a given style. In [59], the style
of an arrangement is defined as a combination of object-level and global measures. The
object-level measures capture local arrangement properties, such as the percentage of in-
stances of a particular object and the relative location of objects, while the global measures
compare high-level characteristics of the two arrangements, such as density and symmetry.
To generate scenes with complex relations such as one object is “hooked on”, “surrounded
by” or “tucked into” another object, Zhao et al. [114] take an example-based approach to
synthesize new scenes by replacing objects in the example scene with database objects while
preserving the original complex spatial relations in the example.
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Progressive scene synthesis. Unlike the example-based methods which take a holistic
view of scene generation by targeting overall similarity between the generated scene and
the exemplars, Sadeghipour et al. [74] propose the progressive scene synthesis which in-
serts objects progressively into an initial scene based on probabilistic models learned from
a large-scale annotated RGB-D dataset, in particular, the SUN RGB-D databset [91]. By
progressively selecting and placing objects, the scene synthesis process attains more lo-
cal controllability and ensures global coherence and holistic plausibility of the synthesized
scenes. However, it is intractable to learn probabilistic models to encode the distributions
of all objects and capture all details in large-scale and complex scenes.

Human-centric scene modeling. We live in a 3D world, performing activities and
interacting with objects in the indoor environments everyday. It is easy for humans to
understand the surrounding scenes or arrange objects based on their functionality. However,
it is challenging for an agent, e.g., a robot, to automatically generate behaviors and interact
with the 3D environments since the robot lacks knowledge of the objects as well as their
functionalities. There has been a great deal of work in robotics and computer vision on
utilizing human-centric approaches in the scene analysis and modeling tasks, e.g., scene
geometry estimation [25], object labeling [42] and robot placement [43], just to name a few.

Recently, human-object contexts are exploited in computer graphics for functional scene
understanding [77]. By observing humans performing different actions, e.g., “use a desk-
top PC”, correlations between human body poses and the surrounding scene geometry are
extracted in [77] to train action classifiers which can transfer interaction knowledge to un-
observed scenes. Given a new, unobserved scene, action maps which encode the probability
of specific actions taking place in the scene are predicted based on the classifiers and the
scene geometry.

Instead of learning the supervised action classifiers, recent works build probabilistic
models for human-object interaction, i.e., actions or activities, and learn the parameters
from multitude data sources, such as depth scans and 3D scenes. Targeting at the generation
of realistic 3D scenes, Fisher et al. [21] present a novel method to synthesize scenes that
allow the same activities as real environments captured by noisy and incomplete 3D scans
(Figure 2.5 left). In order to synthesize object arrangements based on human activities,
they train activity models that encode distributions of objects involved in specific activities
from annotated 3D scene and model databases in a pre-processing step. Given a 3D scan of
an environment as input, semantic scene reconstructions are synthesized by placing objects
iteratively in the scenes based on the the geometric and activity properties of the scan.

Following their work for action-based scene understanding, Savva et al. [78] learn a
probabilistic model connecting human poses and arrangements of object from real-world
observations captured using the same framework as in [77]. The learned probability dis-
tributions over pose and object geometry are encoded in the PiGraphs and then used to
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Fisher et al. [21] Savva et al. [78]

Figure 2.5: Human-centric scene modeling methods that synthesize static 3D scenes based
on the activities predicted from the indoor scan (top-left) or learned probabilistic models
of human poses and object arrangements (top-right).

generate interaction snapshots, which are static depictions of human poses and relevant
objects during human-object interactions (Figure 2.5 right).

The human-centric indoor scene modeling focuses more on the functionality and plau-
sibility of the results, making one step closer to the generation of realistic scenes. However,
with the similar limitation of the scene modeling from X works, activity-centric scene mod-
eling only focuses on synthesizing static scenes based on the input scan [21] or the semantic
instruction [78]. As real-world scenes are not static environments, instead they evolve over
time, driven by object movements resulting from human, it is natural to think about us-
ing human actions to evolve a 3D scene in a progressive manner and generate novel and
open-ended results.

Text-to-scene generation. Similar to sketches, text or natural language is another form
for intuitive content generation. Text-to-scene generation has been studied since the pio-
neering work WordsEye [17]. The early works focus on directly mapping explicit scene
arrangement languages [17, 80, 16] to object placements in 3D scenes (Figure 2.6 left).
Improvements over the early text-to-scene systems are made by Chang et al. [11, 12, 9],
in which spatial knowledge is learned from the 3D scene database, and utilized to provide
unstated facts or common sense knowledge for scene generation (Figure 2.6 right).

In the representative work of Chang et al. [12], the input text is first parsed into a scene
template, a graph representation that captures semantics and spatial relations of a scene.
The scene template is then grounded into a geometric 3D scene by querying a 3D model
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“The lawn mower is 5 feet tall. John pushes 

the lawn mower. The cat is 5 feet behind John. 

The cat is 10 feet tall”

“There is a room with a table and a cake.

There is a red chair to the right of the table.”

Coyne et al. [17] Chang et al. [12]

Figure 2.6: The WordsEye system [17] (left) maps explicit scene arrangement languages
to 3D scenes. Chang et al. [12] (right) use spatial knowledge learned from the 3D scene
database to improve the text-to-scene generation, e.g., introducing a plate to support the
cake although the plate is not mentioned in the input sentences.

database and arranging the objects based on the constraints encoded in the template and the
spatial knowledge priors learned from the 3D scene database [22]. Their latest SceneSeer
system [9] further extends the pineline in [12] with interactive text-based scene editing
operations, e.g., adding, removing, replacing objects, and mouse-based scene manipulation
to refine a generated scene. Since current text-to-scene systems work on an object-level for
scene generation, it is difficult to use them to create complex scenes.

2.3 Substructure and sub-scene level processing

On the conceptual level, our sub-scene level scene processing is related to the substructure
level shape processing. Structure-aware shape processing has drawn a lot of research inter-
ests in recent years [65]. Beyond local and low-level geometry processing, structure-aware
shape analysis and synthesis work on a higher level to understand the global inter and intra
semantic relations among the parts of the shapes and use such structural knowledge for
creation of novel shapes. When regarding a 3D scene as a whole shape and the objects
in the scene as the parts, it is possible to apply the ideas and algorithms developed for
structure-aware shape processing for scene analysis and scene synthesis. In this section, we
investigate the shape processing works that utilize substructures or multiple parts for anal-
ysis and synthesis of 3D objects. In addition, we review the works that consider sub-scenes
in processing of 3D scenes.
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Contextual-based analysis of shapes and scenes. Rather than only considering the
local geometry features for shape matching and understanding, contextual-based shape anal-
ysis combines neighborhood information of nearby geometry or substructures to characterize
shape features at a higher level. In the early work of [6], Belongie et al. introduced shape
context, a contour-based shape descriptor which captures the distribution of nearby contour
points relative to the reference position, for robust digit recognition and silhouette-based
shape matching.

With the increasing heterogeneity in 3D model databases, shapes serving the same
function may have a large difference in geometry. Context information of shape structures,
which characterizes the relationships between the central object part and others, becomes
more reliable when finding similar semantic parts [83, 49]. Shapira et al. [83] define a
similarity measure between two 3D object parts based not only on their local signatures
and geometry, but also on the context extracted from their shape partitioning hierarchy.
Similar to the context-aware similarity measures that build on the graph kernels for image
classification [30] and scene comparison [23], Laga et al. [49] model the context of a shape
part as walks in the graph encoding shape parts and their structural relationships, and apply
the context-aware part similarity to find part-wise semantic correspondences between 3D
shapes. Context-based shape descriptors achieve better performance in part-in-whole shape
matching comparing to only using local features. However, it is unknown which shape parts
or substructures are more discriminative to characterize the nature of the corresponding
shapes.

Similar to the part-in-whole shape matching, object-in-scene type of 3D model retrieval
that uses context information learned from existing 3D scenes is introduced in Fisher and
Hanrahan [20]. Also, contextual information is utilized in 3D scene understanding by train-
ing classifiers that combine contextual relationships between objects for object recogni-
tion [14, 85]. Contextual relationships such as object co-occurrence and spatial arrange-
ments are exploited in Chen et al. [14] to assist object segmentation and classification for
automatic semantic scene modeling from indoor scans. Shi et al. [85] propose a unified
framework that detects both individual objects and object groups by performing contex-
tual analysis using classifiers learned from 3D model and scene databases. In these works,
the context encoded in the substructures or sub-scenes is only regarded as a feature of the
central objects instead of a scene feature.

Our sub-scene level scene analysis takes the benefit of contextual modeling for a deeper
understanding of scene structures. Moreover, our contextual modeling works at two levels:
at a lower level, we treat the representative focal points as a new context-based scene
feature for characterizing complex scenes; at a higher level, we extract focal points by co-
analysis of a scene collection, exploring the broader context of scene clusters to determine
the discriminative focal points.
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(a)

(b) (c)

Figure 2.7: Substructures for part-based shape modeling. (a) A 3D object and its symmetry-
induced substructures in Zheng et al. [116]; (b) a 3D object and its support-induced sub-
structures in Huang [37]; (c) Matching replaceable substructures in Liu [54].

Substructure-based shape modeling. Content creation by combining parts from ex-
isting models has been explored for part-based shape modeling in [26, 105, 40]. There are
also data-driven methods which learn probabilistic models for part compositions of shapes
in certain categories [13, 45]. However, these methods can only produce shape variations
in the same category of objects. Recombining the substructures of the shapes instead of
the individual parts can handle shapes with large geometry and structure difference, and
produce interesting, plausible and functionally valid shape variations [116, 37, 54].

Certain substructures are commonly shared by objects from different categories and
they are related to the functionality of the objects. Based on this observation, Zheng et
al. [116] identify the symmetric function arrangements, which are special arrangements
among symmetrically related substructures (Figure 2.7(a)), and propose a purely geometric
approach based on such substructures to match, replace, and position triplets of parts to
create non-trivial, yet functionally plausible, shape variations without the need of extensive
training data.

Besides the symmetry-induced substructures, support-induced substructures, which are
a set of stable and self-supporting arrangement of object parts, are introduced in [37] (Fig-
ure 2.7(b)). A bottom-up approach is proposed to identify such substructures in a support
relation graph. The derived support substructures are applied to structure reshuffling, re-
arrangement and synthesis. As the support substructures are not based on the symmetric
arrangements, shape modeling using support substructures can produce richer results which
are difficult to achieve with symmetry-induced substructures [116]. In contrast, the func-
tionality of the results may be reduced since support relationships themselves might mot
be sufficient to capture relationships between parts.
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Also aiming to use substructures for part-based shape modeling, Liu et al. [54] develop
an algorithm that efficiently enumerates all replaceable substructures that lead to shape
modification operations. The replaceable substructures are defined as arrangements of
parts that can be interchanged during part-based modeling (Figure 2.7(c)). By converting
a shape into a shape graph in which the nodes represent the shape parts and the edges encode
the connection between parts, the replaceable substructures or subgraphs are characterized
as the graph cuts that will respect all of the neighbor connections when one subgraph is
exchanged with another subgraph. Such substructures are discovered in polynomial time by
performing efficient subgraph matching on the input shape graphs. Plausible and complex
shape variations which contains tens of part nodes are generated efficiently by swapping the
matched replaceable substructures for both in-model and across-model synthesis.

Scene synthesis by reshuffling substructures. Inspired by part-based shape model-
ing [105, 40, 116, 35, 54], reshuffle-based methods are proposed for scene synthesis. Xie et
al. [101] develop a system to reshuffle the furnitures between different input scenes. Their
synthesis results are limited as only simple scene structures and relations are studied. Re-
cently, Huang et al. [36] propose to reshuffle the scene structures to create scene variations.
They establish a graph matching between structure graphs representing two scenes and con-
struct an Augmented Graph (AG) to encode the scene structures of all example scenes. By
reshuffling objects corresponding to the subgraphs based on the AG, scenes with plausible
structure variations are synthesized efficiently.

Comparing to using substructures for shape synthesis, scene synthesis by matching and
reshuffling substructures is difficult since many indoor scenes contain rich and loose object
relationships which will lead to complex structure graphs with edges encoding multiple
relationships between objects. One the other hand, substructure or sub-scene level scene
synthesis is intriguing since it shares the similar advantage of substructure-based shape
modeling, i.e., instead of synthesizing from scratch, the object arrangements and scene
semantics encoded in the sub-scenes could be directly used to generate new scenes.

Our scene synthesis frameworks take the advantage of sub-scene level object arrange-
ments and utilize knowledge extracted from existing scene databases for scene generation.
Our action model of human-object relations and relational model which encodes the se-
mantic object relationships for text-to-scene mapping are indeed the probabilistic models
of object arrangements corresponding to sub-scenes. We build the models through learning
stages and apply these compact models of sub-scenes for interactive and progressive scene
synthesis.
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Chapter 3

Focal-Centric Scene Analysis

In this chapter, we introduce focal points for 3D indoor scene analysis. We represent each
scene by a graph of its constituent objects and define focal points as representative sub-
structures or sub-scenes in a scene collection. We propose a co-analysis algorithm to extract
focal points from a heterogeneous scene collection and cluster the scenes based on the focal
points. We demonstrate advantages of focal-centric scene comparison and organization over
existing approaches, particularly in dealing with hybrid scenes, scenes consisting of elements
which suggest membership in different semantic categories.

3.1 Introduction

Recent works on organizing and exploring 3D visual data have mostly been devoted to object
collections [68, 40, 47, 95, 38]. In contrast, we are interested in analyzing and organizing
visual data at a larger scope, namely, 3D indoor scenes. Even a moderately complex indoor
scene would contain tens to hundreds of objects. Compared to the individual objects therein,
a scene is more complex with looser structural and spatial relations among its components
and a more diverse mixture of functional substructures. The latter point is attested by
hybrid scenes which contain elements reminiscent of different semantic categories. For
example, the middle scene in Figure 3.1 is partly a bedroom and partly a living room. The
greater intra-class variabilities and richer characteristics in scene data motivate our work
to go beyond providing only a holistic and singular view of a scene or a scene collection.

We introduce the use of focal points for characterizing, comparing, and organizing collec-
tions of complex data and apply the concepts and algorithms developed to 3D indoor scenes.
In particular, we are interested in organizing scenes in a heterogeneous collection, i.e., scenes
belonging to multiple semantic categories. Analyzing complex and heterogeneous data is
difficult without references to certain points of attention or focus, i.e., the focal points. For
example, comparing New York City to Paris as a whole will unlikely yield a useful answer.
The comparison is a lot more meaningful if it is focused on particular aspects of the cities,
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Figure 3.1: We analyze and organize 3D indoor scenes in a heterogeneous collection from
the perspective of focal points (sub-scenes in color). Scene comparisons may yield different
similarity distances (left) depending on the focal points.

e.g., architectural style or fashion trends. One of the natural consequences of the focal point
driven data view is that scene comparison may yield different similarity distances depending
on the focal points; see Figure 3.1 for an illustration.

We represent an indoor scene by a graph of its constituent objects. A focal point,
or focal, for short, is a substructure in a scene and corresponds to a subgraph or a sub-
scene. However, we are not interested in all sub-scenes. A key premise of our work is that
meaningful focals should be determined contextually, in a set (Figure 3.2), and through a
co-analysis. To illustrate, there are probably too many notable aspects about Paris. When
putting London and Paris together, one’s focuses narrow down to, e.g., European capitals.

Figure 3.2: Focal points (marked red in the scenes) are contextual and depend on scene
composition in a collection. With more bedrooms (a) or more living rooms (b), different
focals were extracted and hybrid scenes are pulled towards one of the clusters.
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Figure 3.3: Focal-driven scene clustering produces overlapping clusters. An exploratory
path, (a) to (e), through an overlap, which often contains hybrid scenes (c) possessing
multiple focals, can smoothly transition between the scene clusters. These scene clusters
often characterize meaningful scene categories. In this example, the transition is from
bedroom scenes to offices.

If we throw New York and Milan into the mix, then most people are first reminded that
the four cities are the fashion capitals of the world.

In this work, we are interested in extracting contextual focal points that are represen-
tative in a given scene collection. For a focal to be representative, it must occur sufficiently
frequently. However, frequency analysis alone is insufficient. We stipulate that representa-
tivity is also tied to a notion of coherence or compactness of the group of scenes the focal
point is to represent or characterize. Therefore, frequency analysis for focal extraction is
intermixed with clustering, which computes compact groups of scenes, where the scenes in
each cluster are closely connected when viewed from the perspective of the representative
focals of the cluster. Once again, the representative focals occur frequently in the cluster
and they must also induce a compact cluster. To solve the two coupled problems simulta-
neously, we develop a co-analysis algorithm which interleaves frequent pattern mining [29]
and subspace clustering [96].

Focal points play a key role in our organization of a heterogeneous scene collection.
First, we define compactness of a cluster based on a focal-centric scene-to-scene similarity,
which builds on the rooted walk graph kernels of Fisher et al. [23] and assigns higher
weights to walks which originate from the representative focals of that cluster. Secondly,
the scene organization is given by the clustering of scenes based on the representative focals
extracted. Some scenes may contain multiple focals, thus belong to multiple clusters. Such
scenes, typically of a hybrid nature, provide linkages or gateways between scene clusters,
allowing an exploration of the scene organization to naturally transition between meaningful
scene categories, as illustrated in Figure 3.3.

Our main contribution is a focal-driven analysis and organization of heterogeneous data
collections. While we only consider 3D indoor scenes in this work and we are not aware
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of previous works on co-analysis and organization of heterogeneous scene collections, the
analysis is general and not confined to scene data. Important characteristics of our work
which set it apart from previous approaches to organizing data collections include:

• Data are not compared holistically without discrimination. We develop a focal-centric
scene descriptor for scene comparison, which supports scene analysis in perspective.

• Similarity distance between two scenes may be non-unique, i.e., it is based on the
focals designated for comparison.

• Multiple views on scene data depend on focal points, leading to overlapping clustering
of a scene collection, rather than a partition. The resulting organization is particularly
suited for retrieving and exploring complex and hybrid scenes.

We show advantages of focal-centric scene comparison and organization over existing
approaches, particularly in dealing with hybrid scenes. We also demonstrate new capabilities
offered by the new data organization for scene retrieval and exploration.

3.2 Related work

Background. At a conceptual level, our work can be seen as a realization of the notion
of “family resemblances” from the seminal work of Wittgenstein [99]. A scene collection
forms the “family”, and the extracted focals represent the resemblances which “overlap
and criss-cross” among the scenes. Works from cognitive psychology, in particular those
by Rosch [73], provided evidences that perceptual and semantic categories are naturally
formed in terms of focal points or prototypes (see account in [94]), though the so-called
“cognitive reference points” in her work referred to whole representatives of a category
instead of featured substructures. The role of context in measuring data similarity has long
been studied in various fields, e.g., [7, 41]. Our work presents an algorithm for identifying
conceptual focals which serve as reference points for comparing scenes in a heterogeneous
collection.

Scene analysis. As the most familiar environments to humans, indoor scenes are ubiq-
uitous in graphics applications such as virtual reality, gaming, and design. Much research
in vision and graphics has been devoted to recognizing, classifying, and retrieving indoor
scenes, e.g., [70, 69, 23, 44, 107, 115], among others. Our work recognizes the difficulty
in comparing complex scenes globally, e.g., via the classic graph kernels [23]. We propose
extracting and utilizing focal substructures for scene analysis. Of relevance are works which
extract distinctive regions [86, 44] that are representative of a semantic category. The focals
we extract are not meant for scene recognition but organization; one focal may be shared
by scenes from different categories.
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Object collections and co-analysis. There have been a growing body of work on unsu-
pervised co-analysis [105, 34, 95, 33, 116] and organization of 3D object collections [68, 40,
47, 38]. Similar works exist on image collections, e.g., for image co-salience detection [15].
In most cases, co-analysis operates on objects belonging to the same semantic category.
An exception is the recent work of Huang et al. [38] which performs qualitative analysis on
heterogeneous object collections. However, their object comparison employs global shape
descriptors while still resulting in unique qualitative distances, in terms of number of “hops”
in a tree representation, between objects.

Another recent work, the co-hierarchical analysis of van Kaick et al. [95], also employs
a clustering approach and the clustering partitions a set of shapes into different modes of
structural variation. While hierarchical models offer the flexibility to account for structural
variations, they still provide only a single view on each shape. Our representation allows
multiple views of a scene model, each of which may be seen as from the perspective of a par-
ticular focal point. Moreover, our analysis produces overlapping clusters which characterize
the underlying data with larger granularity.

Contextual analysis. Part-in-whole or object-in-scene types of retrievals have been stud-
ied in semantic analysis of 3D objects or indoor scenes. Shapira et al. [83] define the context
for a shape part within an extracted part hierarchy. The series of work from Fisher et al.
rely on spatial and semantic relations among the scene objects for context-based object
search [20, 23] or object replacement for scene synthesis [22]. In all of these works, sub-
structures in a scene provide the contexts for characterizing individual objects therein. We
treat the substructures as explicit scene features, i.e., potential focals, and perform contex-
tual analysis in a larger scope.

One possible way to find salient substructures in a scene collection is to extract object
groups based on co-occurrences of object categories, like in the work of Xu et al. [107].
In contrast, we group scene objects, rather than object categories, to form focals. Fur-
thermore, the grouping in Xu et al. [107] is based on frequency analysis only, while we
perform both frequent pattern mining and subspace clustering for focal point extraction.
Singh et al. [89] detect mid-level discriminative patches from a set of unlabeled images by
alternating between clustering and training discriminative classifiers. A similar idea is then
applied to extract, from a large repository of geo-tagged imagery, visual features which are
both frequently occurring and geographically distinctive under weak supervision [19]. Our
co-analysis is unsupervised, driven by a novel cluster compactness objective for both focal
selection and focal-induced clustering.

Frequent pattern mining. Frequent pattern mining has been an extensively studied
topic in data mining [29]. The most relevant works are those designed for frequent subgraph
mining, e.g., [108], which are primarily based on subgraph isomorphism testing. Directly
adapting these methods to our problem setting is infeasible since the relations among objects
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Figure 3.4: An overview of our algorithm. The input is a heterogeneous collection of 3D
indoor scenes. We represent each scene by a structural graph (a). The co-analysis algorithm
is iterative, between (b) and (c). Each iteration involves an interleaving optimization con-
sisting of focal point detection (b) and focal-induced scene clustering (c). After the set of
contextual focals are obtained, the entire scene collection can be organized with the focals
serving as the interlinks between scenes from various clusters (d).

in our input graphs are loose and possibly uncertain. We adopt inexact subgraph matching
formulated by graph edit distances [71] where the edit cost is defined based on spatial
arrangements between scene objects. It is also worth noting that frequency of occurrence
is not the only criterion for focal point selection. The subsequent cluster analysis further
adjusts the extracted focals.

Subspace clustering. Subspace clustering clusters high-dimensional data into multiple
subspaces, each modeled by a subset of features [96]. At a high level, the clustering problem
we face has a similar setting as subspace clustering, where focals act as the feature subsets
and characterize the subspaces that contain the clusters of scenes. Subspace analysis via
spectral clustering has been one of the most effective approaches to subspace clustering [97].
However, spectral clustering always produces a partition. In our work, we perform clus-
ter attachment to reveal cluster overlap based on their representative focals, making the
obtained clusters better reflect the complexity and heterogeneity of the data collection.

3.3 Overview

The input to our algorithm is a heterogeneous collection of 3D indoor scenes collected from
public repositories. Such scenes typically come with semantic labels for the objects and the
scenes themselves. Our analysis uses the object labels but never the scene labels. Our goal
is to extract a set of contextual focals, as well as a clustering of the scenes based on these
focals; see Figure 3.4.

For each scene, a structural graph is constructed which encodes two types of relationships
between scene objects: support and proximity. Our main algorithm consists of a coupled
optimization whose objective is to maximize the overall compactness of the scene clusters
while ensuring that the focals represent their respective clusters effectively. A key is that
each representative focal is sufficiently discriminative so that it is frequent only within the
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(a) Mining 1 (b) Clustering 1 (c) Mining 2 (e) Cluster attachment (f) Focal joining(d) Clustering 2

Figure 3.5: Illustration of iterative optimization pipeline. A scene is depicted with a grey
box enclosing several substructures represented by circles, squares, diamonds, triangles, etc.
To initialize the interleaving optimization, we first detect a set frequent substructure shown
in the middle in (a). Based on that, subspace clustering leads to incorrect clusters (marked
in red) due to the trivial substructure (circle) occurring in most scenes. Then we perform
cluster-guided weighted mining which eliminates the trivial substructure. Following that,
a more accurate clustering result is obtained in (d) based on the new set of discriminant
substructures in (c). Finally, we perform cluster attachment to reveal overlapping clusters
(the red and yellow clusters in (e)), as well as focal joining to discover non-local focal points
(marked in red in (f)).

cluster it represents or characterizes. The optimization is iterative, where each iteration
interleaves between cluster-guided focal point mining and focal-induced subspace clustering
of the scenes; see Figure 3.5.

The first and initial phase of the optimization is to extract frequent substructures as
focals from the input structural graphs, via subgraph mining (Section 3.4.1). Rather than
relying on subgraph isomorphism, we perform inexact graph matching which insists on con-
sistency of node labeling but not edge connection. The latter is to account for loose relations
between corresponding objects across a large heterogeneous scene collection. The matching
of such relations is based on a layout similarity measure between spatial arrangements of
objects. This matching is confined by scene grouping resulting from the most recent cluster-
ing phase. Specifically, the subgraph matching is weighted so that the substructures found
are frequent only within the clusters they characterize.

In the second phase, based on the extracted focals, we perform subspace clustering
(Section 3.4.2) on the scenes. The structural graphs are clustered so that each cluster is
characterized by a subset of current focals. Generally, the representative focals for a cluster
are not unique. The clustering step seeks to maximize the compactness of all clusters,
where compactness is defined by a scene-to-scene similarity based on focal-centric graph
kernels (FCGK). We define FCGK based on the work of Fisher et al. [23] which utilizes
rooted walk graph kernels. However, instead of weighting equally walks from all sources,
we weigh more heavily those walks which originate from representative focals in the graphs.
The maximization is based an iteratively reweighted subspace clustering scheme we develop,
which gradually increases cluster compactness.

Finally, once the clusters and focals are determined by the optimization, we perform
cluster attachment and focal joining (Section 3.4.3). Some clusters share scenes containing
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Algorithm 1: Structural Graph Construction
Input : scene C = {Oi}i
Output: structural graph G = 〈V,E〉

1 ∀Oi ∈ C, V ← V ∪ {vi} ; // vertices
2 E ← E∪ SupportEdge(C) ; // support edges
3 E ← E∪ ProximityEdge(C,E) ; // proximity edges
4 U ← DetectSymGroup(C);
5 foreach U ∈ U do // for each group of symmetric objects
6 foreach v ∈ V − U do // for each outside object
7 if ∃s, t ∈ U ; 〈v, s〉, 〈v, t〉 ∈ E; darr(〈v, s〉, 〈v, t〉) < 0.1 then
8 foreach u ∈ U do // do symmetric connection
9 E ← E ∪ {〈u, v〉};

10 E ← E∪ ConnectComponents(V,E);
11 return G;

multiple focals, each characterizing a different cluster. These clusters are naturally attached
at the shared scenes. Within a cluster, multiple local substructures may occur concurrently
across all or most scenes. These substructures are naturally joined to form non-local fo-
cals. Note that such non-local focals could not be detected via subgraph mining since only
spatially close objects are connected in the graphs.

3.4 Focal-driven scene co-analysis

For each input scene, we construct a structural graph (Figure 3.6(b)) whose nodes are scene
objects and edges encode spatial relationship, support and proximity, between objects; see
Algorithm 1. Both nodes and edges are labeled, by object semantic labels and relationship
types (support or proximity), respectively.

We first detect all support relationship between objects by testing vertical contacts
between their shape geometries. Second, we add a proximity edge from any object that is
not connected by a support edge, to the object which has the strongest connection with it,
where connection strength (Equation 3.3) is defined as a part of layout similarity. Third,
we ensure that any group of symmetric objects has symmetric connections to other objects,
if any.

We detect all groups of mutually symmetric objects and examine for each group all
outside objects connecting to that group. If more than two symmetric objects in the group
have similar spatial arrangement (Equation 3.5) with respect to an outside object, we ensure
they all connect to the outside object with edges of the same type, depending on their
relationship against the outside object. To detect mutually symmetric objects, i.e., objects
possessing similar geometry, we adopt the registration method described in [98]. Finally, we
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detect the connected components in the current graph, and connect the components with
proximity edges to make sure the entire scene is represented by a connected graph.

Our co-analysis operates on these structural graphs. The main algorithm involves a
coupled optimization for both focal point mining and scene clustering. The objective of the
optimization is

max
F ,Ω

c∑
`=1

n`κ`(F ,Ω) (3.1)

where F = {Fk}nk=1 are the set of focal points, and Ω = {C`}c`=1 the set of clusters.
κ` denotes the compactness of cluster C` based on FCGK, and n` is the size of cluster
C`. We optimize iteratively with the iterations continuing until the overall compactness of
the clusters converges, specifically, when the change of the objective function is less than
1.0× 10−6. In the following sections, we detail our co-analysis algorithm.

3.4.1 Focal extraction via graph mining

A substructure of a scene consists of a group of nearby objects along with their spatial ar-
rangement; it is a subgraph. We could define focals as substructures that occur frequently
across a large number of semantically related scenes, e.g., bedrooms. However, since scene
labels can be unknown or ambiguous, especially for hybrid scenes, we do not use them.
Instead, we couple focal detection with the identification of meaningful clusters. If a sub-
structure occurs in a scene, we say that the scene supports that substructure. The notion
of occurrence will be quickly relaxed by inexact graph matching, which is enabled by a
similarity measure of spatial layout between substructures of scenes.

Layout similarity. We define a layout similarity between two substructures by examining
the pair-wise spatial arrangement of oriented bounding boxes (OBBs) of the objects in the
substructures. Suppose we are given two substructures represented by two subgraphs in the
structural graphs of two scenes: Sa ⊂ GA and Sb ⊂ GB. The layout dissimilarity between
them is defined as:

Dlayout(Sa, Sb) =
∑

{p,q}∈Sa,
{θ(p),θ(q)}∈Sb

darr(〈p, q〉, 〈θ(p), θ(q)〉), (3.2)

where θ(p) ∈ GB is the corresponding object of p ∈ GA. Such correspondences can be deter-
mined during subgraph mining, as described below. darr measures the spatial arrangement
dissimilarity between two pairs of objects which is defined based on two factors. The first
is the connection strength between objects p and q:

γ(p, q) = dH(obb(p), obb(q))
dl(p) + dl(q) , (3.3)
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Figure 3.6: The structural graph (b) of the input scene (a) encodes two types of relationship:
support (red) and proximity (blue). (c) plots the layout similarity of object pairs after
spectral embedding.

where dH is Hausdorff distance, obb(p) the OBB of object p, and dl(p) the diagonal length
of obb(p). The second factor is the angle between the upright vector and the vector between
p and q:

ρ(p, q) = angle(vdir(p, q),vupright), (3.4)

where vdir(p, q) is the vector from the larger object of the two to the smaller one and vupright

the upright vector. The dissimilarity of spatial arrangement between two object pairs 〈p, q〉
and 〈s, t〉 is then defined as:

darr(〈p, q〉, 〈s, t〉)

= α|γ̃(p, q)− γ̃(s, t)|+ (1− α)|ρ̃(p, q)− ρ̃(s, t)|.
(3.5)

γ̃ = e−γ
2/(σγmax)2 is normalized connection strength where σ = 0.4 and the maximum value

γmax is found for all pairs of objects. ρ is normalized similarly. We use α = 0.6 in our
implementation. Figure 3.6(c) shows a few examples of similar layouts.

Frequent substructure mining. Frequent subgraph mining extracts from a set of input
graphs G = {Gi}ni=1, a set of subgraphs F = {Fk}dk=1, which frequently occur (more than a
given threshold value smin) in the input graphs based on subgraph isomorphism. We define:

F = {Fk | |Sk| =
n∑
i=1

xik > smin} (3.6)
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Algorithm 2: Extended Frequent Substructure Mining
Input : structural graphs G = {Gi}i, minimal support smin
Output: frequent substructures F = {〈Fk,Sk〉}k

1 F = {〈Fk,Sk〉}k ← MineSubgraph(G, smin);
2 foreach Gi ∈ G do // expand support
3 foreach 〈Fk,Sk〉 ∈ F do
4 δ(Gi, Fk)← ErrorCorrectMatch(Fk, Gi);
5 if δ(Gi, Fk) < δt then
6 Sk ← Sk ∪ {Gi};

7 foreach 〈Fk,Sk〉 ∈ F do // filter support
8 foreach Gi ∈ Sk do
9 if ϕ(Gi, Fk) > ϕt then

10 Sk ← Sk − {Gi};

11 if |Sk| < smin then
12 F ← F − {〈Fk,Sk〉};

13 return F ;

where xik = I(Fk ⊆ Gi) is an indicator function for subgraph isomorphism and Sk = {Gi |
xik = 1} is the supporter set of Fk.

Directly applying frequent subgraph mining to structural graphs is ineffective since the
the proximity relationships are not necessarily consistent across different scenes, e.g., see
Figure 3.7(a,b). One may then resort to inexact graph matching, e.g., based on graph
edit distance [71]. However, the large search space of inexact subgraph mining makes such
approaches prohibitive.

We propose a two-step scheme for frequent substructure mining (Algorithm 2) which
carries out inexact graph matching efficiently. We first perform frequent subgraph mining
based on exact subgraph isomorphism, using gSpan [108], with a relatively low minimal
support threshold (Line 1 in Algorithm 2). Then, in the second step, we employ inexact
subgraph matching [71] to match the frequent subgraphs mined in the previous step against
all graphs in the set, to expand their support (Lines 2-6). Note that in both steps, the
matching of graph nodes is exact and based only on node labels.

To create tolerance for different proximity connection graph structure, we use error cor-
rection of the subgraphs by introducing three edit operations on graph edges: insertion and
deletion of proximity-type edges, as well as substitution between two proximity edges. The
edit cost of each operation is defined as the spatial arrangement dissimilarity (Equation 3.5)
between the two pairs of objects involved. If the total edit cost δ(Gi, Fk) for matching Fk
and Gi is less than δt = 0.1, we add Gi to Fk’s supporter set.

For a frequent subgraph Fk, we have obtained its embedding in any of its supporter
graphs during the mining step, denoted as Gi(Fk) ⊆ Gi, Gi ∈ Sk. However, the em-
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Figure 3.7: Scenes (a) and (b) have the same sub-scenes represented with different sub-
graphs. (c) and (d) have the same subgraphs while the layouts of the corresponding sub-
scenes are different.

bedding of Fk in its supporters may have different layouts since the exact mining step is
layout-oblivious, e.g., as shown in Figure 3.7(c,d). We locate and remove weak (or outlier)
supporters in which the embedded subgraph has significantly different layout from those
in the other supporters (Lines 7-10). Specifically, given a supporter Gi ∈ Sk of Fk, we
compute the average dissimilarity between its corresponding embedding and those in all
other supporters,

ϕ(Gi, Fk) =
∑

Gj∈Sk,i 6=j
Dlayout(Gi(Fk), Gj(Fk)),

and filter out this supporter if the value exceeds a threshold ϕt = 0.3|Sk|. Finally, we remove
those subgraphs whose number of supporters falls below the minimal support threshold smin

(Line 12).

Cluster-guided weighted mining. Our goal is to detect representative focal points
characterizing a meaningful clustering of the input scenes, and not substructures which are
frequent over the entire collection. Therefore, instead of relying on the frequency criterion
in Equation (3.6), we base our substructure mining on the current clusters and perform
weighted subgraph mining [93]. For each cluster C`, we define supporting weights ($`i)ni=1
as a measure of support of Gi to any substructure. A substructure is detected as frequent if
its weighted sum of support, denoted by discriminant score η`k, is greater than a threshold
ηt
`:

F` = {Fk | η`k > ηt
`} where η`k =

∣∣∣∣∣
n∑
i=1

$`i(2xik − 1)
∣∣∣∣∣ . (3.7)

33



By using positive weights $`i, if Gi belongs to C`, and negative otherwise, the discriminant
score favors a substructure which is frequent in cluster C` and penalizes its frequency in
other clusters. Therefore, the mined substructures in F` are frequent mainly within cluster
C`. Specifically, we set $`i = x`i/n` − 1/n, where x`i = I(Gi ∈ C`), and ηt

` = µn/n`.
We fix µ = 0.1 in our algorithm. The final set of focal points takes the union of per-
cluster discriminant substructures: F =

⋃c
`=1F`, where c is the number of clusters. To

achieve weighted mining, we evaluate the discriminant score of the individual substructures,
which are efficiently enumerated by gSpan, and identify the discriminative ones based on
the current clusters. Then we perform support expanding and filtering for the extracted
substructures. In the first iteration, when clustering is missing, we use unweighted frequent
substructure mining.

3.4.2 Focal-induced scene clustering

With the focals extracted, we perform subspace clustering to group the input scenes ac-
cording to the extracted focals that they “share”, i.e., the scenes contain and support the
same focal. For each scene, we build a high-dimensional feature vector for clustering. The
feature is defined by the set of all extracted focals in the most current focal mining step
(Section 3.4.1). Each entry of the feature vector is an indicator of support of the scene
to the corresponding focal, forming a Bag-of-Words (BoW) feature: xi = (xik)dk=1. Sub-
space clustering is then performed over all input data represented in the feature space,
X = [xi]ni=1 ∈ Rd×n, to extract clusters characterized by a low-dimensional subspace.

For subspace clustering, we adopt the method of Wang et al. [97] on subspace seg-
mentation via quadratic programming (SSQP), a state-of-the-art spectral clustering based
approach. The basic idea of SSQP is to express each datum xi as a linear combination of
all other data in the dataset, xi =

∑
j 6=i zijxj , while implicitly enforcing the coefficients zij

to be zero for all xj which belongs to different subspace from xi. To learn such a coefficient
matrix Z ∈ Rn×n, it solves the following constrained optimization problem:

min
Z
f(Z) = ‖XZ−X‖2F + β‖ZTZ‖1

s.t. Z > 0; diag(Z) = 0,
(3.8)

where ‖ · ‖F is the Frobenius norm and diag(Z) the diagonal vector of matrix Z. The
`1-regularization term enforces sparsity of the solution, leading to feature selection for sub-
space clustering. The problem is a linear constrained quadratic programming which can be
solved efficiently. The resulting coefficient matrix then forms an affinity matrix, |Z+ZT |/2,
based on which spectral clustering is applied to obtain the clustering result. To automati-
cally determine the number of clusters, we employ self-tuning spectral clustering [112]. In
practice, the cluster count is relatively stable throughout the iterations since the structure
of the BOW feature matrix does not change significantly.
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Besides the clustering result, we need to identify the representative focals which charac-
terize the clusters. For each cluster C`, we identify a set of representative focals, denoted as
R`. We rank the importance of all focals supported by any structural graph in the cluster
based on their discriminant score η`k; see Equation (3.7). The top ranked focal is selected
as the representative one. We select the top focals from the list until the i-th one, when
there are over pc = 80% of the structural graphs in the cluster which support these top i
focals simultaneously.

Our ultimate goal is to maximize the compactness of all clusters based on a scene-
to-scene similarity emphasizing their representative focal points. The subspace clustering
above is based on indicator features, which capture the occurrence of the focals but are not
sufficiently informative to reflect the actual scene similarity. Directly incorporating focal-
centric scene similarity into the subspace clustering is infeasible since the representative
focals are unknown before the feature selective clustering is performed. Therefore, we
propose an iteratively reweighted subspace clustering process to gradually produce more
compact clusters where the compactness is measured based on the focal-centric graph kernel
(FCGK).

Focal-centric graph kernel. Given a cluster C`, its compactness is defined as the average
distance between all pairs of structural graphs belonging to it, measured by the FCGK:

κ` = 1
n2
`

∑
Gi,Gj∈C`

kpG(Gi, Gj), (3.9)

where kpG(·, ·) is the weighted p-th order walk graph kernel:

kpG(Gi, Gj) =
∑

r∈Gi,s∈Gj
λr,sk

p
R(Gi, Gj , r, s). (3.10)

kpR(Gi, Gj , r, s) is the p-th order rooted-walk graph kernel [23] which we briefly review
below for completeness. It compares nodes r and s, in graphs Gi and Gj , respectively, by
comparing all walks of length p whose first node is r against all walks of length p whose
first node is s:

kpR(Gi, Gj , r, s) =
∑

(r1,e1,...,ep−1,rp)∈Wp
Gi

(r)

(s1,f1,...,fp−1,sp)∈Wp
Gj

(s)

kn(rp, sp)
p−1∏
i=1

kn(ri, si)ke(ei, fi),

where W p
G(r) is the set of all walks of length p originated from r in graph G. The node

kernel kn takes both geometry and label comparison into account, similar to [23], except
that we used a single label for each object, instead of a series of semantic tags. For edge
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kernel ke, we use the similarity of spatial arrangement (Equation 5.8), instead of a binary
comparison of edge types.

For the walk kernel κ` to be focal-centric, we set higher weight for those rooted walks
which originates from a node in a representative focal of cluster C`:

λr,s =
{

1 + λ · η`k if r ∈ Gi(Fk), s ∈ Gj(Fk) and Fk ∈ R`
1 otherwise

where λ is a scaling factor. In our algorithm, we set λ = 100 which is fairly high and
emphasizes more the role of focals in scene characterization than the overall scene similarity.

Iteratively reweighted subspace clustering. For a structural graph Gi, we weight
the individual dimensions of its BoW feature vector by a weight vector wi = (wik)dk=1 and
solve a weighed subspace clustering which minimizes the error of linear approximation in
Equation (3.8) under a weighted Frobenius norm. Specifically, we replace the first term in
Equation (3.8) by:

‖XZ−X‖2W,F =
n∑
i=1

d∑
k=1

w2
ik[(XZ)ik −Xik]2. (3.11)

The weights allow us to tune the importance of the individual dimensions when seeking
subspaces and can be utilized to iteratively shift clustering results. For example, one can
increase the weights corresponding to the dimensions spanning the subspace of a cluster
obtained in the last round, to reinforce the cluster in the current clustering. In our case, we
encourage the reoccurrence of the compact clusters in the next iteration by increasing the
weights of the dimensions corresponding to its representative focal points, and deprecate
incompact clusters by decreasing their corresponding weights.

Initially, the weights in wi are set uniformly to 1. In each iteration, we perform the
weighted subspace clustering and then update wi based on the compactness of the cluster to
which Gi belongs; see Algorithm 3. For each member of a cluster, we compute the weights
of the dimensions corresponding to the representative focals of the cluster based on cluster
compactness and focal point discriminant score (Line 10). If a focal is not a representative
one for any cluster, we set a 0 for the corresponding dimension of the weight vector for
all structural graphs (Line 11-14). The stopping criteria for this iterative process is the
same as the one used during the interleaving optimization, i.e., the change of overall cluster
compactness.

Figure 3.8 demonstrates the process of reweighted subspace clustering with a mini-
experiment on 8 structural graphs with 5 focals. In the experiment, after obtaining the
subspace clustering along with the representative focals, the weights corresponding to focal
point F3 and F4 are decreased, due to low discriminant score and low cluster compactness,
respectively. With the updated weights, G2, which was originally clustered into the blue
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Algorithm 3: Iteratively Reweighted Subspace Clustering
Input : structural graphs G = {Gi}ni=1,

BoW features: X = [xi]ni=1, (xi = (xik)dk=1)
weights: W = [wi]ni=1, (wi = (wik)dk=1)

Output: subspace clusters {C`}c`=1
1 for i = 1 to n do
2 wi ← 1;
3 repeat
4 {C`}c`=1 ← SubspaceClustering(G, X, W);
5 for ` = 1 to c do // update weights
6 R` ← RepresentativeFocalSet(C`);
7 κ` ← Compactness(C`,R`);
8 foreach Gi ∈ C` do
9 foreach Fk ∈ R` do

10 wik ← n` · κ` · η`k;

11 for k = 1 to d do
12 if Fk /∈

⋃c
`=1R` then

13 for i = 1 to n do
14 wik ← 0;

15 until the overall compactness
∑c
`=1 n`κ` does not improve;

16 return {C`}c`=1;
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Figure 3.8: A mini-experiment on reweighted subspace clustering. The weighted BoW
features are shaded in grey level (dark=large; light=small). From the initial BoW features
(a), subspace clustering produces three clusters (colored) along with their representative
focals (marked in corresponding color). The colored numbers indicate the compactness
values of clusters. F3 is not discriminant as it appears across three clusters (b) so in (c)
the corresponding weights are set to 0. The weights for F4 are decreased due to the low
compactness of the blue cluster. The next clustering groups G2 into the green cluster with
F5 as the representative focal point (d).
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cluster due to F4, is now grouped into the green one characterized by F5. This is because F5

plays the major role in clustering G2 after F4 is deprecated. After reweighting, the weighted
feature vector of some structural graphs may decrease to (or close to) 0 vector (e.g., G4 and
G7 in Figure 3.8). Since the clustering of these structural graphs is quite unpredictable, we
choose to leave them out when their weight vector vanishes, to make the iterative clustering
converge faster. These structural graphs are later introduced back in the beginning of the
next round of interleaving optimization.

3.4.3 Cluster attachment and focal joining

Cluster attachment. Spectral clustering produces a partition of an input dataset, which
does not reflect potential cluster overlapping due to scenes which exist in multiple clusters.
In general, a structural graph for an input scene which support multiple focals may belong
to multiple clusters that have other different representative focals. We simply attach such
clusters with respect to the shared scenes, which can be easily identified, to reveal the
overlap.

Focal joining. As subgraph mining is performed on structural graphs whose node con-
nections only capture local proximity, it is unable to return large-scale and non-local sub-
structures. This issue has been observed in the recent work of Xu et al. [107] which is
based on structure group detection over the structural graphs. In our work, frequent sub-
structure detection is coupled with subspace clustering. This enables us to combine the
extracted focals to form a larger and non-local substructure, through analyzing the clus-
ters they characterize. Suppose that F1 and F2 are both representative focals for some
cluster C`. If their supporter sets in C`, denoted as S`1 and S`2, overlap sufficiently, i.e.,
|S`1 ∩ S`2| > 0.9 min{|S`1|, |S`2|}, we join them, by a union of their nodes, to form a larger
substructure F12 as a representative focal for C`.

3.5 Results

We present results obtained by our algorithm for focal point driven analysis of indoor scene
collections. For scene retrieval, we compare our results to those obtained from state-of-the-
art methods both through precision-recall curves and a preliminary user study, targeted for
hybrid scenes.

Datasets. The datasets we experiment on were provided by the Stanford repository [22]
and the Tsinghua repository [107]. Both datasets contain semantic tags with the objects
originally collected from 3D Warehouse. Since the tags from the two datasets are incon-
sistent, we run our test on each dataset separately. For each scene, we remove the walls
and focus only on the interior scene objects. The Stanford collection consists of 132 scenes

38



Figure 3.9: Several clusters and their representative focals (highlighted in colors) extracted
from the Tsinghua scene collection. Top row shows an intermediate result for two clusters
and the middle row shows the final result for the relevant clusters. Bottom rows show the
final result for other clusters. Note multi-focal hybrid scenes, cluster overlap (marked with
the red dashed box), and non-local focal points, such as the combos of {TV, TV-stand,
table, sofa} and {bed, nightstands, dresser, mirror} in the last two rows.

and 3, 461 objects, encompassing 78 object categories and five labeled scene categories. The
Tsinghua dataset consists of 792 scenes and 13, 365 objects, encompassing 119 object cat-
egories and six labeled scene categories. The Tsinghua dataset contains 102 hybrid scenes
which is composed of many subscenes, each representing a room.

Parameters and statistics. The key parameters of our algorithm include: the minimum
support smin used for frequent substructure mining in the first iteration, and the rooted
paths combination weights used in computing graph kernel. smin controls how frequent the
subgraphs should appear in scenes in order to be extracted as candidate focals. All the
results reported in this work were obtained with the same parameter setting: smin = 40 for
Tsinghua dataset and smin = 20 for the Stanford dataset. The parameters for graph kernel
use the optimal ones available from the published work of Fisher et al. [23]. Values for all
other parameters are fixed throughout and described in Section 3.4.

Statistics and timing. Table 3.1 shows some statistics from focal point extraction and
scene clustering. Timing wise, it took 10.5 minutes to process the whole Tsinghua dataset
(792 scenes) and 3.2 minutes for the Stanford scene collection (132 scenes). Over an itera-
tion, compactness evaluation (including FCGK computation) takes ~60% of the time, with
spectral clustering ~30%, and inexact frequent pattern mining ~5%. Note that the first
two parts were both implemented in Matlab and could see significant speed-up if coded in
C/C++. Timing is measured on a 4 quad-core 2.80GHz Intel Core CPU with 12GB RAM.

Focal point extraction. Figure 3.9 shows several clusters and their representative focal
points extracted from the Tsinghua collection; the complete set of results for focal extraction
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Collection #f #nlf fmin favg fmax %mf
Stanford 24 4 2 3 6 50.4%
Tsinghua 34 7 2 3 5 46.1%

Table 3.1: Statistics for focal point extraction. #f denotes the total number of focals and
#nlf that of non-local ones. The minimum, average, and maximum number of objects in
an extracted focal is denoted by fmin, favg, and fmax. %mf is the percentage of multi-focal
scenes over the whole collection.
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Figure 3.10: The plots show the change of the compactness of the clusters obtained as our
interleaving optimization progresses, for Stanford and Tsinghua datasets respectively. The
red dots represent the switching points from outer loop (mining) to inner loop (clustering).
The optimization takes 5 and 6 interleaving iterations to converge on the two datasets,
respectively.

can be found in the supplementary material of our paper [103]. We can observe hybrid scenes
containing multiple focal points, which is fairly typical and results in cluster overlap. Also
worth noting is the extraction of non-local focals, which are composed of relatively distant
object groups, e.g., {TV, TV-stand, table, sofa}, etc. Table 3.1 gives the number of non-
local focals extracted for both datasets. See also the last two rows in Figure 3.9 for the
effect of focal joining.

Iterative clustering. Figure 3.10 plots how the normalized compactness of the clusters
change as the iterative clustering algorithm progresses. While the change is not strictly
monotone, it is evident that the iteration generally improves cluster quality over time. The
final cluster counts for the two sets are 5 and 9, respectively.

Precision-recall on scene retrieval. Figure 3.11 compares our method to two other
methods for scene retrieval:

1. GK: Graph kernels of Fisher et al. [23] to measure similarity between whole scenes.
Since we were unable to obtain the authors’ code, we coded up our own implementation
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Figure 3.11: Precision-recall curves for scene retrieval. (a) Stanford scene collection. (b)
Tsinghua collection, simple scenes. (c) Tsinghua, hybrid scenes. (d) Tsinghua, all scenes.

with two major differences to the original work. First, we use our structural graphs
which only encode two types of relationships (support and proximity) and do not
consider hierarchical scene graphs. Second, the computation of node and edge kernels
are slightly different; see Section 3.4.2. For both GK and FCGK, the schemes for
node and edge kernel estimation and graph kernel normalization, as well as all the
parameters, are the same as the original work.

2. BOW: A baseline method where we use bag-of-words features on the focal points
only as a scene-to-scene similarity.

3. FCGK (SG): On the Tsinghua dataset, we also apply our FCGK similarity on the
scenes where as focals, we use the 212 structural groups detected by Xu et al. [107].

When applying our method, which uses FCGK for scene similarity, we show results in three
settings: 1) using the initial set of focals after only one step of frequent pattern mining; 2)
using an intermediate set of focals; 3) using the final set of focals extracted.
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Figure 3.12: Comparing GK and FCGK on scene similarity. Top row: two scenes in the same
category, but GK returns a large distance between them due to the dissimilar surrounding
objects. Bottom row: two scenes belonging to different categories while GK returns a small
distance also attributing to surrounding objects, e.g., the nearby bookshelves. In contrast,
with a focal-centric view, our method gives more meaningful distances on the two pairs.

For the Tsinghua dataset, the ground truth for evaluating scene retrieval is given by
the scene labels/categories which come with the dataset. Since this dataset contains many
hybrid scenes, we separate it into a subset of simple scenes and the remaining hybrid
(complex) scenes and report results on each and their combination. Since the Stanford
collection does not come with scene labels, we provide our own labels obtained manually,
which, admittedly, could introduce an evaluation bias. A potentially more reliable method,
such as voting from multiple users, could be employed.

From the precision-recall curves, we see that our focal-centric similarity based on the
final set of focals is the best in all four cases. Moreover, the performance gain is more
prominent for hybrid scenes. These results demonstrate not only the merit of utilizing
focals for scene comparison but also the merit of our focal extraction scheme, as it seems
evident that retrieval performance improves as our iterative algorithm progresses.

Comparison to GK. Figure 3.12 shows an explicit comparison between GK and FCGK
on scene similarity, attesting to the effectiveness of utilizing focals. In our experiment,
we also observed that the matching performance of GK tends to be negatively affected
by the presence of many small/trivial objects. For example, when a scene contains a shelf
supporting many small objects, GK counts rooted walks from all these objects, which would
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influence the similarity between more prominent objects. FCGK is more discriminative and
trivial objects are less likely to have been chosen as focals.

User evaluation on retrieval. For a hybrid scene, it may be difficult to assign an
unambiguous category label. The ground truth used for retrieval on such scenes may be
unreliable. Thus instead of relying on scene categories as ground truth, we let human users
judge scene similarity based on their prior knowledge. In this second comparative study
on scene retrieval, we focus exclusively on retrieval where the query is a hybrid scene. We
present a user with 10 queries. For each query, the top return from the three compared
methods (GK, BOW and FCGK) are presented to the user and the user is asked to choose
which of the three is most similar to the query. We repeat this for a total of 102 queries for
the hybrid scenes in the Tsinghua dataset. Against GK, we obtain a winning percentage of
70.2% and against BOW, we obtain 73.9%. The results are statistically significant (with
p = 0.01). In the studies, each scene has been rendered in three random bird’s eye views
and the images were presented randomly. Among the 43 participants, 80% are computer
science researchers, with ages 20 to 50. The rest are frequent computer users with varying
backgrounds.

3.6 Applications

Our scene organization allows classical scene queries and is thus suitable for any applica-
tion which utilized retrieval results as before, e.g., [22, 107]. In this section, we discuss
several new capabilities afforded by our focal-based data organization for scene retrieval
and exploration.

Comprehensive retrieval. In classical retrieval, a single query would fetch a single
ranked list of data items. With our focal-centric similarity and pre-computed set of focals,
our scene organization supports such classical queries. It also supports part-in-whole type
of queries, where the user specifies a region of interest (ROI) in the query scene. This
is demonstrated with the exploration tool which we describe below. The interesting new
feature enabled by our scene organization is what we call comprehensive retrieval. Here
the query does not have a specified focal. However, the available focals in the organization
are matched with the query scene. Instead of returning a single ranked list of scenes, the
comprehensive retrieval returns multiple ranked lists, each of which corresponds to a well-
matched focal. Figure 3.13 shows such a result. Note that the vertical order in the table has
no clear meaning since the three (horizontal) lists are retrieved based on different sets of
focals. If putting all the results together, however, one can expect that those retrieved with
multiple focals should be ranked higher since they have more focal substructures receiving
higher weights; refer to Equation (3.9).
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Figure 3.13: Comprehensive retrieval takes a query scene and returns scenes grouped by
well-matched focals with the query. In each group, the returns are ranked by FCGK based
on the corresponding focal. In this example, the query has two focals (colored yellow and
red) matched from the scene organization. Three ranked lists of returns corresponding to
the two focals (first two rows) and to the joined focal (bottom row) are shown.

For focal-to-scene matching, we utilize the efficient subgraph matching approach de-
scribed in [71], by which the focal subgraphs are pre-compiled into a hierarchical represen-
tation to accelerate the online matching. The average query time is 960ms for the Tsinghua
collection and 140ms for the Stanford set.

Multi-query retrieval. In applications such as example-based scene synthesis [22], one
may form queries consisting of multiple semantically related scenes and wish to retrieve more
scenes “of the same”. Such multi-query retrievals are well-supported by our scene organiza-
tion. Indeed, since the query scenes are related, they likely share meaningful substructures,
making them suitable for focal-based scene comparisons.

Given a query set, we extract frequent substructures from the set and match them
against the extracted focals in the scene organization. We then retrieve scenes from the
organization using FCGK based on the matched focals. Figure 3.14 shows one such result
with a query set of four hybrid scenes. For comparison, we also show a ranked list of returns
based on GK similarity measured against any scene in the query set. As one would expect,
the focal-based retrieval produces more discernable results, and more useful results. If the
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Figure 3.14: Multi-query retrieval takes a query set (left) and returns a ranked list of scenes
(bottom-right) via focal-based scene comparison. FCGK similarity is used and measured
based on focals (colored red and yellow) that well-match frequent substructures in the query
set. Returns based on global scene similarity computed by GK are also shown (top-right).
To not introduce a bias by coloring of the focals, in the GK returns, we also color any object
whose tag matches that of an object in one of the focals.

user selected four query scenes all containing a bed-nightstand combo and a desk-chair
combo, then it is likely that he/she was seeking scenes that contain similar substructures.

Scene exploration. We develop an exploration tool, based on the extracted focals, which
enables a user to browse through a heterogeneous scene collection. Focal points are the
primary means for search and navigation. Figure 3.15 shows the GUI of our tool. The user
can select a few focals from the focal point list panel (bottom), and our tool automatically
selects a set of scenes sharing similar focals and lists them in the scene list panel (right).
The user can browse the list and view the scenes in the main viewer (middle). At any time,
the user can click on a selected focal to view its embedding in the current scene. In terms
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Figure 3.15: GUI for our exploration tool is composed of four parts: the focal point list
panel (red box), the selected focal list panel (green), the scene list panel (blue), and the
main scene viewer. The user can pick a selected focal to view its embedding in the current
scene. She can also select a region of interest (ROI) in the viewer to explore more scenes
via the focals around the ROI.

of navigation, as shown in Figure 3.3, the user can traverse from one scene to another, and
one scene cluster to another, through focals which interlink them.

In addition, we provide an interface for the user to paint a region of interest (ROI) and
search for scenes which contain sub-scenes that are similar to the surroundings of the ROI.
When the user selects an ROI in a scene, our system first finds a focal point in the scene
which overlaps most with the ROI and adds the focal to the selected list. It then retrieves
a new list of scenes based on the updated list of selected focals. Exploring the database
with focal points around an ROI, instead of with only the ROI, can provide more relevant
results. For example, if the user selects only a chair model as ROI, naive partial matching
would simply return all scenes containing a chair. In contrast, our tool searches for scenes
sharing the same focal around the chair, returning results that are more context-aware.

Note that the rooted walk graph kernels of Fisher et al. [23] could also support contextual
part-in-whole queries. However, performing subgraph search is likely too time consuming for
online retrieval. With pre-analysis resulting a focal-based scene organization, our tool can
support efficient context-aware partial matching over a large heterogeneous scene collection.
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3.7 Discussion and future work

At the core of the data organization problem is the mechanism for comparing data. Tra-
ditional approaches rely on holistic data views and unique distances defined between data
items for grouping or clustering. However, when the data become complex and multi-
faceted, a fixed and global view on data similarity can hardly express the rich characteristics
in the data.

We advocate the use of focal points for comparing and organizing complex and hetero-
geneous data and use 3D indoor scenes as a prototype to demonstrate its feasibility and
performance gains, e.g., in retrieval. The new approach seems particularly apt at dealing
with complex and hybrid scenes. Perhaps its most compelling feature is the ability to pro-
cess large and heterogeneous collections of scenes and to organize them into an interlinked
and well-connected cluster formation, which facilitates scene exploration.

FCGK vs. GK. While our retrieval experiment showed superior performance of FCGK
over GK, one should realize that a direct comparison between the two is not exactly fair.
GK is a standalone graph similarity measure, where only two graphs to compare are needed.
FCGK-based comparison comes with a higher cost as it requires a set of graphs and a co-
analysis for focal extraction. That said, if a scene collection is available, we would still
suggest using FCGK for its better performance and modest processing costs.

Comparison to structural groups. In our work, a focal point consists of a group of
scene objects and it is derived via structural scene analysis. By name alone, this suggests
similarity to the structural groups computed by Xu et al. [107]. There are however major
differences. First, their structural groups are category groups with objects of high co-
occurrence frequency, while our focals are object groups corresponding to representative
substructures. More importantly, their group extraction involves only frequent pattern
mining through local proximity based search. The latter implies that their method is
unlikely to return non-local structural groups. This is in part evidenced by the much higher
number of groups (212) they obtain vs. the 34 focals we obtain, on the same scene collection
(Tsinghua, 792 scenes). The retrieval results in Figure 3.11 seem to suggest that non-local
focals extracted via mining and clustering provide the better perspectives for meaningful
scene comparison.

Non-unique distance. The retrieval experiment using FCGK seems to suggest that our
method assigns a unique distance between any two scenes. This is true once the set of
focals is fixed and FCGK is to be computed based on those focals and the clustering result.
However, the non-uniqueness of focal-centric distances is well utilized in other settings
including comprehensive retrieval, multi-query retrieval, and ROI-driven scene exploration,
where the relevant focals in the query scenes are all determined on-demand.
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Limitations. Our current algorithm depends on semantic labeling of scene objects. It
remains to be seen whether it works effectively with noisy or incomplete labels, based on pure
geometry analysis. For example, it is interesting to test our method on inputs with various
levels of label noise. However, it would be hard to quantitatively evaluate the robustness
against noisy labels since it may be difficult to reproduce realistic labeling noise introduced
by humans. Nevertheless, the two datasets we used do contain some incorrect labels, which
did not seem to affect the overall performance. There are perhaps more than a desirable
number of parameters in the algorithm, whose values were determined experimentally. From
a technical stand point, improvements are possible in various components of the algorithm.
For example, our layout similarity operates on OBBs only, which may be unsuitable for
objects with complex geometry and spatial arrangements. The structural graphs model the
scenes only as flat arrangements of objects. Hierarchical organization may be potentially
advantageous.

Future work. One obvious pursuit is to apply our focal-driven approach to other datasets,
e.g., large and heterogeneous collections of annotated images. An interesting technical
question is whether our scene organization can be updated with an additional set of scenes
without recomputing everything. Also, rather than replacing one object at a time for
scene synthesis like in previous works, our scene organization and focal-based partial scene
retrieval, may allow for substituting sub-scenes for the synthesis task.

We conclude this chapter with a question: “what is the best way to compare complex
scenes?” This work, along with others before it, assume that comparing attributed graphs
defined by semantic tags and object arrangements is the best way. However, we observe
that visually, many retrieval results do not look so compelling even with the best method
to date. If one takes away the colorings in Figure 3.14, then the contrast between GK
and FCGK would not be as salient. Hence, the focal-centric view we advocate offers a
perspective worth considering. The general question, also one that is attributed to complex
data beyond those of indoor scenes, should perhaps be answered with user and application
intent in mind.
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Chapter 4

Action-Driven Scene Evolution

In this chapter, we introduce a framework for action-driven evolution of 3D indoor scenes.
Our goal is to simulate how scenes are altered by human actions. To this end, we develop an
action model with each type of action combining information about one or more human poses
and a set of objects belonging to sub-scenes. We apply actions to trigger appropriate object
placements, based on object co-occurrences and spatial configurations learned for the action
model. We show results of our scene evolution that lead to realistic and messy 3D scenes,
as well as quantitative evaluations by user studies which compare our method to manual
scene creation and state-of-the-art, data-driven methods, in terms of scene plausibility and
naturalness.

4.1 Introduction

We live in a 3D world and we constantly act on and interact with the 3D scene environments
that surround us. The scenes evolve over time, driven by object movements resulting from
human actions. It seems natural to ask whether digital 3D scenes can be processed in
such an action-driven manner. With an increasing demand of 3D scene data, especially
those of indoor environments, from emerging VR/AR applications to data-driven scene
analysis, techniques for scene generation are drawing more attention in the graphics and
vision communities. A method for action-driven scene evolution aims to replicate how
indoor scenes evolve in real life, producing continuous series of realistic virtual 3D scenes.

Most indoor scenes available from public data repositories, e.g., the 3D warehouse,
possess the organization and cleanness of a showroom; these scenes were mostly designed.
In real life, our offices, labs, and bedrooms are often messier. So far, aside from scene
construction from images [56, 21] and sketches [107], the predominant approach to realistic
scene synthesis has been based on exemplar-based learning [22], where a scene is produced
by sampling from a probabilistic distribution learned from 3D scene examples. In real life
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Figure 4.1: Action-driven scene evolution alters an initial scene consisting of a desk and a
dining table. The initial scene and three intermediate evolution snapshots (after 1, 4, and 30
actions, respectively) are shown (left) with zoom-ins for better viewing on the right. Applied
actions trigger both object relocation (e.g., keyboard and headphone) and insertion (e.g.,
laptop and books). Action selection and the resulting 3D scene evolution are all performed
automatically based on action data learned from annotated photos.

however, a scene is not a random whole “event”, but a snapshot from a continuous scene
evolution.

Motivated by these observations, we introduce a framework for action-driven evolution
of 3D indoor scenes, where the goal is indeed to simulate how scenes are altered by human
actions, and specifically, by object placements necessitated by the actions. In our work, an
action can involve one or more objects and one or more humans (e.g., a group meal). Object
placements for a given scene can involve either relocating existing objects or inserting new
objects into the scene. For instance, applying the action “use laptop on desk while sitting”
to a scene without a chair near the desk would cause a chair to be moved there to support the
action. Applying the action “eat dinner on table while sitting” would trigger the insertion
of several objects, e.g., plates and forks, to an otherwise empty dining table.

We develop an action model which supports action-driven 3D scene evolution. The
model is data-driven and learned from annotated scene data. Each type of action combines
information about one or more human poses, one or more object categories, and spatial
configurations of objects belonging to these categories which summarize the object-to-object
and object-to-human (the pose in the action model) relations for the action. Correlation
between the learned actions are analyzed to guide the construction of an action graph,
whose nodes correspond to actions and edges encode correlations between actions in the
form of transitional probabilities. Scene evolution starts with an initial 3D indoor scene.
We probabilistically sample an action sequence from the action graph, where each action
triggers appropriate object placements, which continuously evolve the scene; see Figures 4.1
and 4.4.

To account for the limitation of insufficient 3D indoor action data [21], we learn action
models from a database of annotated photographs, i.e., Microsoft COCO [53]. First, we
analyze the photo captions therein to collect photos related to certain actions. Then, photos
of the same action are clustered based on object categories and human poses within the
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photos. Each cluster defines an action node in our action graph. Object co-occurrences,
object-human, and object-object spatial relations are learned within each action node. For
the action graph, edges are added to all pairs of action nodes, and also a self loop to the
node itself. We compute the transitional probabilities by examining the overlap of associated
objects. From the action graph, plausible action sequences are generated automatically and
stochastically. Each action applied triggers appropriate object relocations or insertions,
based on object co-occurrences and spatial configurations learned for the action model.

Example-based synthesis [22] is also data-driven, but it takes a holistic view of scene
generation: the produced scene must be similar to the exemplars overall and likely belonging
to the same scene category. In contrast, action-driven evolution is a procedural and more
atomic form of scene generation that is not tied to scene categories; the key criterion is
what actions are applicable in a given scene context. For example, the action “read book
on desk while sitting” is applicable in any scene with a desk. No less important is the fact
that action data is more compact and more atomic than whole scene exemplars. Applying
actions one at a time allows more local control and generates scenes with higher granularity.

To summarize, by taking an action-driven approach to indoor scene generation, our work
offers a more atomic and fine-grained view of the problem. Our contributions include:

• A progressive approach to scene generation which leads to an evolving and granular
set of 3D scenes exhibiting a higher level of scene complexity and messiness than
previous works, without compromising plausibility and naturalness.

• Action learning from annotated photos rather than 3D scene exemplars in previous
works. This enables us to tap into a much richer data source for action-driven scene
processing.

• A more complete action model which accounts for group actions, as well as co-
occurrences and joint placement of multiple objects, allowing both object relocation
and insertion.

We show results of our scene evolution, leading to realistic and messy 3D scenes. Eval-
uations include user studies that compare our method to manual scene creation and state-
of-the-art, data-driven methods, in terms of scene plausibility and naturalness.

4.2 Related work

Aside from serving VR/AR applications, large collections of 3D scenes are valuable both as
training data to support machine learning for scene understanding and as model repositories
for model-driven 3D scene modeling [47, 82, 107, 21]. Recently, there have been a great deal
of work in computer graphics and computer vision on the processing and analysis of indoor
scenes, e.g., reconstruction, understanding, and editing. In this section, we only focus on
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works most closely related to ours, i.e., those on 3D scene generation as well as human- or
action-oriented scene processing.

Scene modeling. Interactive, user-centric tools for 3D scene modeling exist commercially,
e.g., Autodesk Homestyler [5], Sweet Home 3D [3], and in the research literature. The use
of such tools requires advanced modeling skills and the modeling time is often quite long.
Data-driven scene modeling or reconstruction from X has gained much interest lately where
X could be a sketch [107], a photograph [56, 39], or a depth scan [47, 82, 14]. In these cases,
the object arrangements inferrable from X are fixed and guide the retrieval and placement
of suitable 3D objects from a model repository. In our work, we are interested in a more
open-ended and less constrained synthesis, not modeling from X.

Furniture layout optimization. Several approaches have been proposed for the furni-
ture layout optimization problem. Germer and Schwarz [27] arrange a room by letting each
piece of furniture act as an agent in a multi-agent system, following manually specified room
semantics and furniture layout rules. Merrell et al. [63] turn furniture layout guidelines into
a probabilistic model and suggest sensible room layouts by sampling from the density func-
tion, as a user interactively moves furniture in a room. In contrast, Yu et al. [110] learn
the layout rules from 3D scene exemplars. All of these solutions optimize the layout of a
given room with a given set of furniture. In our work, we evolve a 3D scene by moving and
inserting objects progressively.

Learning from 3D data. Existing 3D scene synthesis methods predominantly resort to
probabilistic reasoning from 3D exemplars and 3D scene databases to drive the synthesis [22,
43, 21, 78, 74]. Some of these methods, e.g., Fisher et al. [22], take a holistic approach to
scene generation, while others progressively alter an initial scene. These approaches could
all be limited by the availability of well constructed and annotated 3D scenes. For reference,
the state-of-the-art work by Fisher et al. [22] worked with about 130 user-constructed 3D
scenes. The lack of data limits both the variability and the scale of the generated scenes.
In our work, we utilize thousands of photos with action-related text annotations from the
COCO database. The challenge is to recover the 3D scene layout and properly embed
human poses into the photos.

Action-driven scene understanding. There has been a great deal of work in robotics
and computer vision, and more recently in computer graphics, on utilizing human actions
for various analysis tasks. After all, humans understand the world and function in it through
their actions. Works that have been applied to 3D scenes include geometry estimation [25],
object labeling [42], and affordance learning [77], to name just a select few. The key problem
is to fit static human poses or pose sequences into various scene contexts to understand the
structure and functionality of a scene and the objects therein. In our work, such a fitting
task is necessary. But our focus is not on automated analysis, but on how to organize the
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(a) (b) (c)

Figure 4.2: Given an initial scene (a), placing a laptop based on pairwise human-object
relations would rely on a human pose predicted for the chair (b). In contrast, applying the
action “use laptop on table while sitting” by our method simultaneously places the laptop
and rotates the chair (c), owing to the joint positions learned of all three objects in the
scene: table, chair, and laptop.

fitted human poses and their surroundings, learn a suitable action model, and then apply
the model for 3D scene synthesis.

Human- or activity-centric scene modeling. Jiang et al. [43] propose an interest-
ing, human-centric approach to arrange objects in a room, focusing more on human-object
relations rather than object-object relations. Specifically, they learn, from 3D scene exem-
plars, density functions which characterize how each type of object is placed relative to a
human pose. The role of the density functions is similar to that of our action model for
scene generation. However, one distinction is that these density functions encode pairwise
human-object relations while an action in our model can encode joint relations among mul-
tiple humans and objects; see Figure 4.2 for a comparison. When arranging a room, they
first infer possible human poses and then place one object at a time, based on the predicted
poses and the learned human-object or object-object relations. In contrast, our actions can
trigger the placement of one or more objects at a time and the placement is not predicated
only by pose estimation — it accounts for both pose fitting and object co-occurrence; see
Figure 4.3 for a visual example.

Sharf et al. [84] study object mobilities in 3D scenes and edit scenes by altering object
arrangements and configurations (e.g., drawers opening or closing) based on their mobilities.
Mobilities of objects arise from their movements due to human actions. However, they learn
mobilities, again from 3D scene exemplars, by analyzing only object-object relations between
reoccurring objects.

Fisher et al. [21] propose an activity-centric approach to functional scene modeling,
which generates 3D scenes that allow the same human activities as real environments cap-
tured through noisy and incomplete 3D scans. Given an input scan, affordance analysis [77]
is first performed to detect potential activity regions and activity types. Then objects rel-
evant to the activities are retrieved and fitted to the scan over the activity regions under
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(a) (b) (c)
Figure 4.3: With only a desk in an initial scene (a), the action “use laptop on table while
sitting” can insert a chair and a laptop along with other objects; see (b) and (c) for two
possible results from our action-driven scene synthesis. In contrast, without a chair in (a),
a sitting pose is unlikely to be predicted near the desk solely by pose estimation, hence a
chair is unlikely to be placed or retrieved.

human-object interaction priors learned from 3D scene databases. While their work focuses
on modeling functionally similar scenes conditioned on a coarse geometric input scan, the
input scan is not a must. The synthesis problem we address in this work has a different
input and different goal while learning priors from different data sources. Our action model
is learned from annotated photos with only spatial constraints, while their activity model is
learned from 3D scene exemplars with semantic annotations. More importantly, their syn-
thesis is designed to serve functional scene modeling where object placements are mainly
constrained by human activities inferred from a given scene; see Figure 4.3. In contrast,
our action model evolves a scene with object placements conditioned on both human-object
relations and object co-occurrences.

Comparing to Savva et al. [78] which synthesizes interaction snapshots by sampling
prototypical interaction graphs learned from real-world observations of human-object inter-
actions captured with commodity RGB-D sensors, we learn atomic actions from annotated
photos for progressive scene synthesis. If we were to place a rigged human character in a
single scene synthesized in our work, the result would be an interaction snapshot. However,
our goal is not to sample a single scene instance, but to produce a continuously evolving
sequence of snapshots. Furthermore, we aim to produce realistic and messy scenes popu-
lated with many objects, while [78] focuses on accurately depicting the interaction between
a human and few key objects.

COCO+action database. A highly related recent development is the COCO-a database
established by [72]. COCO-a enriches the Microsoft COCO database with comprehensive
annotations of visual actions, designed to facilitate action discrimination and scene under-
standing. However, more than half of the annotated actions in COCO-a happen between
people, e.g., talking and playing games, and occur during sports play or outdoors. As well,
human representations remain as whole segments without pose embedding or joint labeling,
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Figure 4.4: An overview of our action-driven 3D scene evolution. Action models are learned
from annotated photos (left). An action graph (middle) is built, whose nodes are the
learned actions, and edges represent transition probabilities between the actions. To drive
the evolution of an initial 3D scene, we apply a sequence of actions sampled from the action
graph onto the scene. Each sampled action triggers appropriate object placements, i.e.,
relocation or insertion, producing a continuous scene evolution (right).

which are necessary for action-driven object placement. For these reasons, we produced our
own action-oriented annotations over photos from COCO and elsewhere that are designed
to serve action-driven 3D scene evolution.

4.3 Overview

We first introduce the notations of our action model and action graph, with which we
present an overview of our two-stage learning and synthesis framework; see Figure 4.4 for
an illustration.

Action model. We describe an indoor scene action by the following action model A =<
T ,K,H; C,D >, where T is the action type, K is the key object specifying where the
action happens, H is a representative 3D human pose, C stores the probability distribution
of occurrence times for each object, and D specifies spatial configuration of constituent
objects: for every object, we summarize its positional information relative to both the
human pose and other objects. By definition an action model can be uniquely identified
by the combination of (T ,K,H), which says “what action (T ) is performed where (K) with
what pose (H)”. By taking all these five elements into consideration, our method can model
actions occurring in rich contexts with human pose variations, e.g. reading book lying on
bed vs. reading book on desk while sitting.

Action graph. This is a weighted graph G = (V,E) over a set of nodes V , each of which
is an action defined by the above action model. An edge ei→j ∈ E is directed from an
action node ai ∈ V to another node aj ∈ V or a node to itself, with weight wi→j defining
the transitional probability from ai to aj , i.e., how likely is action aj going to happen after
action ai. A action graph is actually the state diagram of a Markov Chain, from which
action sequences can be sampled to drive scene evolution.
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System overview. As shown in Figure 4.4, our system consists of two stages: an offline
action learning stage and an online scene synthesis stage. In the learning stage, we construct
an action graph from action nodes learned from the Microsoft COCO database. First, we
retrieve a set of instance images from the COCO database for each action type based on
keyword searching, and infer 3D human pose and object layout information from each image
(Section 4.4.1). We then cluster the instance images according to their associated actions –
(T ,K,H). After that, we construct the action model for each cluster by analyzing the oc-
currence and spatial layouts of objects (Section 4.4.2). Lastly, we construct an action graph
over the action nodes and compute edge transitional probability based on the correlation
between action nodes (Section 4.4.3).

After the action graph is constructed, we use it to drive the evolution of a scene by
applying a sequence of actions sampled from the graph – this is the online scene synthesis
stage. Given an initial scene, we first adapt the action graph by disabling action nodes that
cannot be applied to the scene (Section 4.5.1). Then we generate an action sequence by
sampling the adapted action graph. Note that the action sequences are not learned in the
learning stage; they are instances of Markov chains sampled from the action graph. The
realization of an action involves placement of 3D human pose and synthesis (insertion and
relocation) of corresponding objects (Section 4.5.2). In the end, we obtain a sequence of
evolved scenes after applying a series of actions to a target scene.

4.4 Data-driven model construction

In this section, we describe the procedure for data-driven action learning and action graph
construction. Given a set of COCO images with manually labeled human joints, our method
automatically infer various action models and construct an action graph over all action
nodes. As far as we know, this represents the first attempt at using 2D images to construct
action models for 3D objects and scenes. Without loss of generality, we first introduce the
procedure for learning actions performed by a single person (Sections 4.4.1-4.4.3). We then
describe how to extend the procedure to learn group actions that involve multiple persons
(Section 4.4.4).

4.4.1 Preparing action instances

The first step of our learning procedure is to collect a large number of action instances
(exemplars), each of which describes the human pose, the key object, and the object-object
and object-human relationships involved in the action. To this end, we take as input the
Microsoft COCO database, which consists of a large set of pre-segmented, annotated photos
providing the exact labels we need for extracting action instances: human-object segmenta-
tion, object category labeling, and five captions per photo that linguistically describes the
scene; see Figure 4.5(a). Starting from the COCO database, our method first finds a set
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Figure 4.5: (a) A typical image from COCO with block annotation for each object. (b) The
annotated 2D skeleton for 3D human pose recovery. (c) The recovered 3D pose (green) is
projected onto the image, as well as its right and frontal directions (blue). The center of
torso (red bar) is defined as body center. Placing the right and frontal vectors there forms
a Cartesian coordinate system. Each object is reduced to a 2D point (red square for the key
object and red crosses for others) located at its polygonal center. (d) All object locations
are mapped into a standard Cartesian system and their polar coordinates are recorded for
learning their spatial layout.

of instance images for each action type. Then, the 3D human pose is recovered for each
instance with the help of manually labeled joints. After that, we infer the key object and
3D object layout in each instance with the help of recovered 3D human pose.

Instance extraction. Action type is the linguistic description of a typical activity per-
formed by humans in an indoor environment. To start with, we predefine eight indoor action
types for the experiment in this work: use computer, use laptop, read book, prepare food,
watch tv, eat snacks, eat dinner and eat dinner in group. These action types are selected
because the spatial layouts of their involved objects are anchored to the human poses, which
is a necessary condition for our human-centric action model.

Given an action type, we retrieve relevant instance photos from the COCO database
using their associated photo captions. To maximize recall, we collect synonyms and different
tenses of the action type word and use them for keyword-based searching. For example, for
action use laptop, the set of keywords we used include use laptop, using laptop, work laptop,
working laptop, operate laptop, operating laptop, utilize laptop, utilizing laptop. Some of
the returned photos may contain multiple irrelevant persons in the background, or too few

57



Figure 4.6: Five representative 3D human poses used for our action models. From left:
standing, sitting, sitting with straight legs, lying with the face down, and lying with the
face up. Angles at red skeletal joints are used for matching the recovered skeletons.

object categories to describe a meaningful action instance. We manually filter out these
photos by examining the object category labels in the photo. We further remove photos
that do not contain a visible human pose. This gives us a clean set of photo instances, of
size 60 - 150, for each action type.

3D human pose recovery. The COCO database only provides a 2D image region of the
human body (Figure 4.5(a)), while the human pose definition in our action model is 3D.
Hence we need to recover the most plausible 3D human pose from the 2D image. To this end,
we first manually annotate the human skeleton joints in each action instance image. Then
we apply the method in [117] to find a 3D pose configuration Hp whose projection on the
image plane matches the 2D joint annotations. To obtain a stable 3D pose estimation, we
also need to manually provide the plausible locations of as many missing joints as possible,
as in the case of partial occlusion; see Figure 4.5(b). The output is a 3D human skeleton
and a weak camera projection matrix of the input image.

The resulting 3D human skeleton defines a 3D local frame in the scene, with origin at
the center of the torso skeleton, the right direction determined by the vector between two
shoulder joints, and the up direction defined by the torso. The frontal direction can be
computed by the cross product of the up and right directions; see Figure 4.5(c). We use
this coordinate frame for inferring and encoding all spatial layout information in the next
step; see Figure 4.5(d).

However, the recovered 3D skeletons may have large variance and may be partial due to
occlusions and thus cannot be directly used as the representative human pose for our action
model. We thus follow the idea from [43] and introduce five representative human poses
(see Figure 4.6) for our action model. For each action instance, we find one representative
pose H∗ that best matches the recovered partial skeleton Hp by minimizing

D(Hp,H∗) =
∑
i

ωi‖θi(Hp)− θi(H∗)‖, (4.1)
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where θi ∈ {θleft
hip , θ

right
hip , θleft

knee, θ
right
knee } are angles at the hip (between torso and thighs) and

knee joints (marked in red in Figure 4.6), and ωi = 1 if Hp contains the corresponding joint,
with ωi = 0 otherwise. We assign the resulting representative 3D human pose to H of the
current action instance. This representative pose H is only used to identify the action of
the current instance, while the original recovered pose Hp is used to infer object layout.

Key objects. The key object in an action model specifies where the action is performed.
Its functions are twofold: first, it is fixed in the scene and decides where and how to place
the human pose; second, it provides a supporting surface for most objects involved in the
action model. Since our work focuses on indoor scenes, we predefine office desk, dining
table, coffee table, kitchen island, bed, and couch as the candidate key objects. The key
object K in an instance is then automatically recognized by matching the object labels with
the key object categories listed above. If several objects in the instance matches, we select
the one whose image region is close to the human pose and has the largest region size.

Object layout. Given an action instance image with recovered 3D human pose and la-
beled object segmentations, we learn the object-human and object-object relationships in
this step. Without a full reconstruction of the 3D scene, we encode an object’s relative
position to the human in a 2D polar coordinate system represented by the projected local
human frame. Specifically, we project the local human frame onto the instance image and
assume that the projected torso skeleton has unit length. The right axis is defined as the
polar axis, as shown in Figure 4.5(c).

We assume that the key object is always in direct contact with the human pose: the
pose is either (vertically) above the key object or (horizontally) around it. By assuming
that all image instances are taken by cameras that are positioned in upright orientation,
the on-relationship is true if the torso and thighs are entirely included in the convex hull
of the key object. Otherwise, the human pose is deemed to be around the key object. For
the around-relationship, we only calculate the angular coordinate ψK of the center of key
object in the local human pose frame.

For each constituent object, we compute the polar coordinates (r, ψ)o|H of its segment
center with respect to the human pose. To infer the object-object relationship from the im-
age, we translate the polar coordinate system described above to each object segment center
o and record the polar coordinates of all other constituent objects o′ as (r, ψ)o′|o. In our
experiment, we do not infer the relationship between the key object and constituent objects.
Also, we do not record the layout of chairs because their positions can be well determined
by human poses via a sitting relationship, but difficult to learn from 2D projections due to
occlusions.
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4.4.2 Generating action nodes

After collecting action instances, we group the instances with the same action (T ,K,H)
and construct an action model for each group. By assuming the instances in a group cover
sufficient statistical variance of the constituent objects in terms of their occurrence frequency
and spatial layout, we learn an occurrence model C and a spatial layout model D for each
action model.

Occurrence analysis. An action node usually involves many objects, which however
might vary in their dependencies on the action model and their occurrence times in the
action. For instance, both laptop and coffee mug can occur in the action node “use laptop
on desk while sitting". While the laptop must be involved with one singe instance, the
coffee mug might occur multiple times or not at all. Let O denote the set of objects that
occur in at least one of the extracted image instances, excluding all key objects. Then
the occurrence model C(o, n) of each object o ∈ O is computed by C(o, n) = N(o, n)/Na,
where N(o, n) is the number of instances that contain n copies of object o, and Na is the
total number of instances of the action model. If an object o has occurrence frequency of
C(o) =

∑
n>0 C(o, n) lower than a certain threshold εC , we set C(o) = 0, namely C(o, 0) = 1

and C(o, n|n > 0) = 0, which means the object o will never be involved in this action. This
can remove most of the random objects appearing in the instance images that are irrelevant
to the action node. In all experiments, we have εC = 0.1. The result occurrence model
C(o, n) of object o is a probability distribution over its occurring times n.

Spatial layout analysis. To encode all possible correlations between object and human
placements caused by an action, we model each object’s spatial distribution relative to both
human pose and other objects. This is different from our treatment of the occurrence model
since spatial layout is a more critical factor for scene synthesis. As well, we have found that
a single object-human spatial constraint is insufficient for satisfactory spatial layout.

From a set of input instances belonging to the same action node, we first learn the distri-
bution of the human orientations with respect to the key object. We assume that it follows
a von Mises distribution P(H,K) and estimate its parameters from angular observations
in the instance images, which has numerical solutions and can be done with a maximum
likelihood estimation (MLE).

Then we learn how each object o is arranged with respect to the human pose H. Ideally,
we should directly model the spatial probability distribution over a two-dimensional space
(r, φ), which defines the distance to the body center and the orientation angle with respect
to the right direction of the human pose. In practice, we found that this 2D distribution
can be well modeled by the product of two 1D distributions in distance and angle domain,
which allows us to estimate the parameters of each distribution separately. We thus assume
that the distance r follows a log-normal distribution, and the angle φ is a mixture of von
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Figure 4.7: The learned spatial distributions of a few constituent objects in the action
“use computer on desk while sitting": the object-human distribution for monitor (a) and
keyboard (b) with the human marked as blue dot, and the keyboard-monitor (c) and mouse-
keyboard (d) distributions with the reference objects (the second object in each pair) marked
as green squares.

Mises distributions. Concisely, the object-human distribution is defined as

P(o,H; Θ) = P(r,H; Θr) ∗ P(φ,H; Θφ). (4.2)

We apply MLE to estimate the parameters of the log-normal distribution P(r,H; Θr),
which has closed form solution. The number of von Mises distributions in the mixture
P(φ,H; Θφ) is a latent variable; we test values ranging from 1 to 4 and choose the one that
maximizes the Akaike information criterion [4]. We then fix the number of von Mises dis-
tributions and utilize the numerical solution provided by [24] for estimating the parameters
in the model. Figure 4.7(a-b) illustrate the learned distributions of monitor and keyboard
with respect to human pose in the action node of “use computer on desk while sitting".

Finally, we formulate the object-object relationship P(o, o′) in the same way as in Equa-
tion 4.2, with a similar learning procedure. The interdependencies between objects should
not be treated equally; we would like to extract “reliable" object-object relationships that
occur more frequently in the input instances. We compute the co-occurrence frequency
f(o, o′) of two objects o, o′ ∈ O, and object pairs with f(o, o′) < 0.5 will be rejected from
establishing the object-object relationships. Figure 4.7(c-d) illustrate the learned distribu-
tions for two pairs of frequent relationships in the action node of “use computer on desk
while sitting".

4.4.3 Creating action graph

We prefer the action sequence that drives the scene evolution to be locally steady instead
of totally random: two adjacent actions in the sequence should share certain constituent
objects, which roughly approximates action progression in real life. For example, the action
“use laptop on desk while sitting" is more likely followed by the action “read book on desk
while sitting" (sharing desk) or “use laptop on sofa while lying" (sharing laptop).

We construct an action graph for modeling the transitional probability between actions.
The action graph G = (V,E) is a weighted directed graph, where V is a set of action nodes,
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and E are edges connecting all pairs of action nodes, including action nodes to themselves.
An edge ei→j ∈ E directs from node ai to aj and carries the transition probability wi→j ,
i.e., how likely action aj is to occur after action ai. The transition probability is defined by

wi→j = ŝij∑
j ŝij

, (4.3)

where ŝij is the correlation between two action nodes that is computed by

ŝij =

1, if i = j;

max{sij , 0.5}, otherwise.
(4.4)

Here sij measures the overlap of the constituent objects of two action nodes:

sij = δ(Ki −Kj) +
∑
o min{Ci(o), Cj(o)}∑
o max{Ci(o), Cj(o)}

. (4.5)

The first term is a Dirac delta function encoding the overlap of key objects, which returns
1 if Ki = Kj , otherwise is of value 0. The second term measures the similarity between
two occurrence frequencies Ci and Cj ; by considering C as a histogram over all constituent
objects excluding the key object, the denominator measures the area of the “union" of two
histograms, i.e., the sum of the maximum of each bin, while the numerator measures that
of their “intersection" histogram, i.e., the sum of the minimum of each bin.

With this formulation, the two nodes with no object category intersection have the lowest
transitional probability, whereas those with many shared object categories have higher tran-
sitional probability. The resulting graph is a directed state diagram, and the bi-directional
transition probabilities are asymmetric (due to per node normalization in Equation 4.3).
Sampling over the graph produces a Markov chain of human actions. The Markov assump-
tion (“memoryless” transition probabilities) generates a new action based on the previous
action instead of long-time causality relations – this simplifies the sampling process.

4.4.4 Group actions

The action model discussed so far is limited to describing actions involving a single person.
Now we extend the model to handle actions involving multiple persons, i.e, group actions.
To this end, we classify the objects in a scene into two classes: exclusive objects that are
only affected by a single person action and shared objects affected by multiple persons’
actions. We thus define a group action model as AG =< {Ak}, Cs,Ds >, where {Ak} are
constituent single action models, Cs specifies the probability distribution of occurring times
for each shared object, and Ds describes the spatial distribution of shared objects and all
human poses.
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In this work, we focus on a common indoor group action – “group dining on table while
sitting” with up to four people, denoted as < {A, n}, Cs,Ds >, 2 ≤ n ≤ 4, where all single
action models {A} are identical, i.e., “dining on table while sitting”. We reuse the single
action model already learned for this group action, thus the new tasks here are how to
identify the shared objects from the image instance and learn Cs and Ds from all instances.

We extract image instances of group dining from the COCO database with group sizes
of two to four. Ideally, we assume that a shared object is equally distant from all persons
that have access to it. To automatically identify shared objects in each image, we first
compute the maximal human-human distance dh. Then for each object o, we compute its
distance to all persons, where the maximal and minimal distances are denoted by dmax

o and
dmin
o respectively. After that, we identify a object to be shared if it is neither too far away

from nor too close to any person, which is quantified by the following two conditions:d
max
o /dh < 2/3,

dmax
o /dmin

o < 2.
(4.6)

After collecting all instances for the group action node, the occurrence model Cs is
analyzed for all the shared objects in the same way as for constituent objects in the single-
person action model.

We assume that the distances between modeled humans fall into a certain range so that
they can share objects, i.e., di,jh = d(Hi,Hj) ∈ [a, b], where a = 0.6m and b = 2m for all
experiments in this work. We further assume that the human-human distance follows a
uniform distribution over [a, b]:

P (di,jh ) =


1
b−a , a ≤ di,jh ≤ b,

0, otherwise.
(4.7)

Given the configuration of multiple human poses, a shared object o must locate in the region
defined by Equation 4.6, and its distribution over that region follows the following uniform
potential:

P(o, {H, n}) ∝ 1
dmax
o

. (4.8)

To construct the action graph with group action nodes, we use the involved single action
model for computing the transitional probability from or to a group action node, thus the
introduction of group actions demands no further change of edge weight computation in the
action graph.
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4.5 Action-driven scene synthesis

Given the action graph learned from the annotated COCO images, we are now ready to
synthesize human actions to drive the evolution of a scene. Our solution follows recent work
[22, 21] and models human actions including group activities to synthesize lively messy 3D
indoor scenes.

Given an input scene with key objects, our method first adapts the action graph to the
input scene. Then it generates an action sequence by traversing the graph based on the
node-to-node transitional probability. The action sequence starts from a random action
node and ends with a user specified length. Note that the action sequence driving the scene
synthesis is not directly learned from photos. Instead, each action sequence is an instance of
the Markov chain sampled from the action graph, which characterizes correlations between
action nodes. Finally, the scene evolution is realized by exerting actions from the sequence
in the scene one by one, which triggers the insertion or relocation of involved objects, and
naturally leads to a messier scene at the end.

4.5.1 Graph adaptation

Our action graph is constructed from all types of actions learned from the COCO database
and covers actions for various types of scenes: bedroom, kitchen, office room, etc. Applying
it to a specific scene requires a preprocess of graph adaptation. That is, given an input scene
with key objects, we need to prune certain action nodes if their key objects are missing in
the scene. For example, if silverware is not present in the scene, the action node of dining
could be on – the realization of this action will cause the insertion of silverware; but if the
dining table (key object) is missing, dining should not be allowed to happen, because our
action model relies solely on the key object to place the human pose and therefore all other
constituent objects. After the graph adaptation, we also remove dangling edges connected
to pruned nodes and update edge weights in the adapted graph according to Equation 4.3.

4.5.2 Action realization

After an action is performed, the involved objects retain in the scene. That means an action
is performed in the context created by all its ancestors in the action sequence. To realize
a new action A =< T ,K,H; C,D > from the sequence, we first place the human pose H
into the scene w.r.t. the key object K; then collect the set of active objects O (involved in
A) by sampling the occurrence model C and place them in the scene such that their spatial
layouts follow the distributions D; finally, we relocate non-active objects Õ (not involved in
A) so that they do not obstruct the current action.

Fitting human pose (H). The human pose H of an action is always in contact with
the key object K as per our assumption on their mutual relationships. If it is an on-
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relationship, we randomly sample a location and orientation to place the human skeleton
on the supporting plane of the key object, then locally adjust its location so that the pose can
physically fit onto the key object. For the around-relationship, instead, we first randomly
sample a location that is horizontally around the key object, and an orientation according
to the learned angular distribution P(H,K) of human pose w.r.t. the key object; then
we place the human skeleton subject to collision rejection detection. If the scene contains
multiple copies of K, we randomly choose one for placing the human pose.

Placing active objects (O). Given the human pose and key object of the action, we
need to figure out the set of constituent objects O to be inserted, as well as their locations
and orientations in the scene. First, we generate the set of constituent objects according
to the learned occurrence model C. For the active objects that have been in the scene,
we have two options – either reuse it or insert a new one. We predefine an upper bound
for the occurrence times of each object category in the whole scene. For example, a scene
can contain at most one monitor, one keyboard, but two coffee mugs, ten books. New
objects are inserted into the scene before their time of occurrence reaches the upper bound;
otherwise, we only allow reuse of objects for realizing new actions.

We then place these objects one at a time in order of descending occurrence probability
and size in the second step. The placement of an object o ∈ O follows the preference density
function:

f1(o) = L(o) ∗ S(o) ∗ P(o). (4.9)

The collision penalty term L(·) enforces no physical collision between objects; L(o) = 0 if
o collides with any other objects in the scene, and is of value 1 otherwise. The overhang
penalty term S(·), similar to that in [22], prevents o from hanging off the edge of a supporting
surface. We project the bounding box of o onto the supporting surface and compute the
intersection area A(o) between the projection and the supporting region. Precisely, S(o) = 1
if A(o) ≥ 0.5, otherwise S(o) = 0. That says the placement of o is not plausible if more
than half of its volume hangs off the supporting surface. The last term P(o) combines the
spatial layouts of o w.r.t. both human pose and other objects:

P(o) = P(o,H) +
∑
o′

f(o, o′) ∗ P(o, o′), (4.10)

where P(o,H) and P(o, o′) are the object-human and object-object distributions, respec-
tively, f(o, o′) is the co-occurrence probability of (o, o′), and o′ ∈ O is the object that has
been placed in the scene with f(o, o′) > 0.5.

Note that the positioning of o so far is still in the human centric system, which might
generate a 3D location floating in the air. To make the synthesized scene physically plausi-
ble, we move o vertically until it reaches the closest supporting surface of either a key object
or the floor. A sampling strategy is utilized in the placement procedure to ensure a balance
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between the diversity and the plausibility of object configuration. In our implement, we
uniformly sample k = 2, 000 locations and select the one that maximizes the score defined
in Equation 4.9 as the final position for an object. To determine the orientation of an object
o, we manually specify a facing direction for o w.r.t. human. Each placed object is rotated
horizontally so that its facing direction pointing to the human center.

Placing non-active objects (Õ). To relocate a non-active object õ ∈ Õ, we must con-
sider two more constraints besides the collision and hanging-off rejections. First, õ must
not obstruct the current action. We define a working zone for the current action and keep õ
from that region. In our experiments, the working zone of an action is defined as the convex
hull of its human pose and constituent objects with occurrence frequency greater than 0.5.
Second, the new location of õ should be as close to its original location as possible.

Similar to active objects, we insert objects in Õ into the scene one at a time in the
order of descending object sizes. For each object õ ∈ Õ, we uniformly sample k = 10, 000
positions, and select the optimal location that maximizes the following score:

f2(õ) = L(õ) ∗ S(õ) ∗W(õ) ∗ exp(−∆(õ)). (4.11)

The first two terms, L(·) and S(·), are the same as that in Equation 4.9. The third term
W(·) = 1 if õ falls outside of the working zone; otherwise, W(·) = 0. The ∆(õ) in the last
term measures the distance of shift of õ from its original position.

We allow the placement algorithms for O and Õ to roll back to the previous object,
modifying its placement in seeking of a relaxed solution, if the placement of the current
object fails up to a prescribed number of times (set to 2,000 in our current implementation).
Given the fact that single action models are rarely cluttered by constituent objects, the roll-
back procedure always successfully places active objects O in all experiments. However,
non-active objects Õ will keep accumulating as an action sequence proceeds. At a certain
point, it becomes impossible to place all the non-active objects on a valid supporting surface.
Further options in this scenario include stacking them vertically or placing them on the floor;
both options occur naturally in messy scenes.

4.5.3 Realizing group action

The realization of group action < {A, n}, Cs,Ds > is a hybrid process. We first place
multiple persons around the key object following the human distribution; second we generate
a set of shared objects according to the occurrence model Cs and place them according to
the spatial distribution of shared objects; third, we apply the single person action model A
for each person to place exclusive objects belonging to each single action; lastly, to place
non-active objects, we additionally include all persons and shared objects for computing
the working zone of the current group action.
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We place human poses into the scene one at a time. The first human pose is randomly
placed around the key object. Suppose k human poses have been placed, the location of
the (k+ 1)-th human pose must also be around the key object, as well as obey the distance
constraint in Equation 4.7 to all other k human poses. This procedure stops until the group
size reaches four or no further human pose can be placed, which leads to groups with size
of 2 and 3.

Given the set of shared objects, we place them one at a time in order of decreasing
object size. For each shared object o, we uniformly sample 2,000 locations and select the
placing location that maximizes the following score:

f3(o) = L(o) ∗ S(o) ∗ R(o) ∗ P(o, {H, n}), (4.12)

where L(·) is the collision penalty, S(·) is the overhang penalty, R(o) is a binary indicator
of whether o falls in the sharing region specified by Equation 4.6, and P(o, {H, n}) is the
spatial distribution potential of o; see Equation 4.8.

4.6 Results and evaluation

In this section, we present results of action-driven scene evolution and compare the results,
through user studies, to those created by an artist, and those by the most closely related
methods for human- or activity-centric scene modeling [43, 22, 21]. We also demonstrate
the capability of our method to synthesize messy scenes at larger scales.

Action data and graph. Action learning is conducted exclusively over 1,216 annotated
photographs, 936 of which are from the Microsoft COCO database [53]. The remaining
photos were collected on-line to enrich or complement action data extracted from COCO.
The photos were all annotated with embedded human poses as well as action and object
labels. It takes less than 30 seconds to mark all the joints for one human in a photo. An
unlabeled on-line photo typically takes less than three minutes to annotate using LabelMe
for a scene with 5-10 objects. For our experiments, the learned action graph is a complete
graph (with self-loops) composed of 20 nodes and covering 8 types of actions. After anno-
tating all the photos, action learning and graph construction take about 8 minutes in total
to complete.

3D scene evolution. Figure 4.14 (also see Figures 4.1 and 4.8) shows a gallery of 3D
scene evolution results that highlights the various features offered by our method. Timing-
wise, sampling an action from our action graph takes on average 0.1 second and object
placements take on average 1 second.

In each row of Figure 4.14, the action sequence is probabilistically sampled from the
learned action graph and applied to the initial scene in order. Applied actions are indicated
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Figure 4.8: Two scenes synthesized from a group action “group dining” (bottom) vs. those
by a baseline method (see text) mainly involving single-human actions for dining (top).
Both syntheses start with the same initial scene and place the same set of objects. Notable
distinctions can be observed for the placements of the large fruit bowl, which is a shared
object.

in the figure, with zoom-in views to better visualize the insertion and relocation of objects.
The two final rows in the figure show how actions involving working and dining learned
from bedrooms and living rooms can be transferred to never-seen scene categories such as
dining halls and computer labs to create quite a mess. It should be reiterated that the mess
is purely the result of action-driven scene evolution, starting from a clean initial scene. The
work of Fisher et al. [21] was able to show the modeling of messy 3D scenes when depth
scans of cluttered scenes are given as input.

Instead of probabilistically sampling the action graph, our work easily supports user-
guided scene evolution where a user drives the process by iteratively selecting from a set of
probable actions suggested (in the order of decreasing probabilities) by the action graph.

Group actions. Figure 4.8 contrasts scenes synthesized via group actions to those gen-
erated by applying a “baseline” method mainly involving single-person actions. In both
cases, we first sample from a distribution of persons based on the same initial scene. For
group actions, we sample and place a set of shared objects learned from photos of group
actions. Then for each person in the group, we apply a single-person action model to place
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additional objects into the scene. For the baseline method, the shared objects are randomly
assigned to persons in the group, then we apply a series of single-person actions to place all
the objects including the shared ones.

It is interesting to observe that the placements of wine glasses appear to be more distant
from the chairs (where persons using the wine glasses would sit), compared to the bowls
and folks. Upon close examination of the data source, the wine glasses in the photos do
generally appear relatively far from the chairs where people sit. This is likely due to the
fact that people holding wine glasses tend to move around in the room.

To assess the plausibility of our learned group action model, we prepared 6 pairs of
scenes like the ones shown in Figure 4.8, using our group action model and the baseline
method described above. We then asked 24 human participants to select, one out of each
pair, the scene they believe to “appear more like a scene during or after a group of people
having a meal together”. The participants selected the scenes generated by our group action
model 75% of the times.

4.6.1 Plausibility tests against artist

A key evaluation for our method is whether the results from action learning and scene
generation are plausible. Similar to previous works [21], we leave such judgments to human
subjects. We ask users to give a score from 1 (least plausible) to 5 (most plausible) to a
generated scene based on two criteria: plausibility, the scene is a plausible result after a
given action is performed on an initial scene; and naturalness, the scene looks natural.

Object placement test (OPA). To compare our results to human-generated scenes, we
hired a professional artist to manually create scenes based on given actions. When asking
users to rate scene plausibility, we found that providing them with more contexts with
which to make judgements is more likely to gather more reliable feedback. Therefore, for
each initial scene and a given action, instead of providing only a pair of scenes to rate, we
provide five scenes: three synthesized by our method with random initialization, and two
scenes created by the artist. In each case, the same set of objects were inserted or relocated.
The five scenes, randomly ordered, make up one query for the Object Placement test against
Artist or OPA, for short. Our user study consists of 20 OPAs covering 10 actions. With 28
human participants working on the OPA test, we gathered a total of 140 user ratings.

Figure 4.9 (left) plots the overall average user rating for the artist’s results and our
results from the OPA test. Per-action average ratings are plotted in Figure 4.10. Our
results received an average rating of 3.46, which approaches closely to that of the artist
(3.83). If we take the best out of our three results from each OPA query, then the (best-of-
3) average rating goes up to 4.29 and is higher than artist’s average rating, indicating that
our method is able to produce results no worse than an average artist in the best scenario.
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Figure 4.9: Overall average user ratings for scene plausibility test, when comparing our
results to scenes created by an artist and to scenes created by closely related works.
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Figure 4.10: Per-action OPA test results: comparison to scenes created by an artist in terms
of average user ratings. Along the x-axis, the 10 actions are: “use computer on desk while
sitting”, “use laptop on desk while sitting”, “use laptop on coffee table while sitting”, “use
laptop on bed while lying”, “read book on desk while sitting”, “eat snacks on coffee table
while sitting”, “read book on coffee table while sitting”, “read book on bed while lying”,
“eat dinner on table while sitting”, “watch TV on sofa while sitting”.

Scene evolution test (SEA). We scale up the OPA test to scene evolution involving
multiple actions. Each Scene Evolution test against Artist, or SEA, consists of two sequences
of scenes evolved using our method via probabilistic sampling of the action graph and one
sequence of scenes created by the artist using the same action sequence, all with the same
initial scene and same set of objects. Three evolution steps are applied for each initial scene
and the SEA test covers 9 initial scenes. A total of 29 human participants rated for the
SEA test. For each query, the participants were asked to rate the overall plausibility of each
of three scene sequences. The overall average and per-action-sequence average ratings are
shown in Figures 4.9 (middle) and 4.11, respectively.
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Figure 4.11: Per-action-sequence SEA test results: comparison to scene evolutions created
by an artist, over 9 initial scenes and action sequences.

The average and best-of-2 average ratings for our scene evolution results are 3.35 and
3.90, respectively, while the average rating for the artist’s results is the highest, at 4.14.
Artist’s performance in SEA appears to be superior than that in OPA. This may be partly
attributed to the artist’s ability to take into account of subtle object movements between
action transitions – movements that our current action model does not accommodate. For
example, we observed that the artist would move a chair to the side before having the
human in action get up from the chair after dining to watch TV.

4.6.2 Comparisons to closely related works

Among all the previous works on 3D scene modeling, the example-based synthesis method
(F1) of Fisher et al. [22] is the closest to our work in terms of end goal: both aim to develop
an open-ended tool to synthesize 3D scenes, but take different routes to achieve the goal.
Judging by modeling methodologies, the works by Jiang et al. [43] (J1) and Fisher et al. [21]
(F2) come the closest as they both take a human- or activity-centric approach. All of these
works, including ours, are data-driven. However, F1, J1, and F2 all learn from 3D scene
exemplars, we learn from annotated photos.

In terms of scene synthesis capabilities, neither F1 nor F2 was designed to obtain a
fine-grained scene evolution. Both J1 and our work can progressively alter a scene; their
capabilities depend on the generative models developed and richness of data utilized. We
present head-to-head comparisons to the three methods, via a user study to rate the plau-
sibility of the generated scenes.

Since the compared methods perform learning from different data sources, which would
influence object category occurrence, we only compare the plausibility of object placement
where the set of objects placed are the same, as in the OPA test. Also, only single-frame
object placements are compared since the other three methods were not all designed for
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CK-1 CK-2 LS-1 LS-2 D-1 D-2 Average
J1 2.43 2.33 3.53 4.13 2.77 2.77 3.00±0.09
F1 3.20 2.77 2.27 2.07 3.17 2.50 2.66±0.09
F2 3.73 3.77 3.27 3.40 2.87 2.60 3.27±0.10
Ours 3.08 2.95 3.30 4.07 3.97 3.38 3.46±0.06

Table 4.1: Numerical average user ratings for the OPO test, for three actions and two initial
scenes and object replacements per action. The three actions are: CK = “use computer
on desk while sitting”; LS = “use laptop on coffee table while sitting”; D = “eat dinner on
table while sitting”.

1
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5 J1
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F2
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Q1 Q2 Q6Q5Q3 Q4
Figure 4.12: OPO test results on 6 queries: comparison to three related works in terms of
scene plausibility. Along the x-axis, the actions are “use computer on desk while sitting”(Q1,
Q2), “use laptop on coffee table while sitting”(Q3, Q4), and “eat dinner on table while
sitting”(Q5, Q6).

scene evolution. Given an action applied to an initial scene, the four scenes resulting from
J1, F1, F2, and our method make up one query in the Object Placement test against Other
methods or OPO, for short. Human participants are asked to provide plausibility scores for
these queries.

The actions selected for the OPO test are “use computer on desk while sitting”, “use
laptop on coffee table while sitting”, and “eat dinner on table while sitting”, which contain
common object categories whose placements have been learned by all four methods. For
each initial scene, the arrangements of essential furniture pieces are provided to assist J1 and
F2 in pose or activity prediction. Then for J1, the same objects are placed with both human
and object contexts learned from 3D example scenes in which the placements of a set of daily
objects are labeled by users. Although F2 is designed for functional scene modeling from
depth scans, its activity model is capable of placing objects without constraints from the
scans. We asked the lead author of F2 to produce results for the tested actions and specified
objects, conditioned only on given furniture pieces to ensure a fair comparison. For F1, we
used the scenes generated by the artist from previous tests as the input examples for their
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Figure 4.13: Additional comparisons among the four methods in terms of scene plausibility.
Left: the number of times our method was rated higher (green) or lower (red) than other
methods in the OPO test, respectively. Right: the percentage of each method being rated
as the best (green) or the worst (red) among all.

example-based synthesis. The final scenes are synthesized by applying the necessary object
placements, as guided by the input scene examples and scenes in the 3D scene database
from the original paper.

For each of the three actions selected for the OPO test, two object placements are per-
formed by all four methods. Thus, there are six OPO queries in total. The user study
involved 30 human subjects to provide a total of 180 ratings. Table 4.1 summarizes the
OPO test results, including average user ratings for each scene-action combination. The
last column shows the overall averages and the standard deviations of the ratings. The num-
bers indicate that in the OPO test, our action-driven method outperforms all of the three
methods compared. Significance tests also show that the performance gains are statistically
significant. Figures 4.9 (right) and 4.12 visualize the numbers given in Table 4.1.

Test results in Figure 4.12 show that our method performed best for the action “eat
dinner on table while sitting”, which involves multiple small items. The likely reason is
that our action model considers human-object relations as well as relations among multiple
objects, e.g., the bowls and utensils, while both J1 and F2 focus on pairwise human-object
relations. For the action “use computer on desk while sitting”, F2 received the highest
scores. This may be attributed to the semantic human-object relations that can be learned
from their 3D scene data possessing semantic annotations, e.g., monitor is not blocked for
visibility, keyboard and mouse need to be touchable. On the other hand, our action model
learns the human-object distributions only with spatial constraints from photos.

In Figure 4.13, we show additional comparison results, including head-to-head ratings.
These results consistently demonstrate the advantage of our method from different perspec-
tives. Note that all the human subjects in our user studies are graduate students in the
fields of computer science and engineering.

4.7 Discussion, limitation, and future work

Our ultimate goal is to automatically synthesize truly messy yet realistic 3D indoor scenes,
a task we believe no current work has been able to come close to achieving. In reality, scenes
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are messed up by our daily actions, not a probabilistic scene/sub-scene mixing. In addition,
a mess is hardly something that can be properly learned from limited exemplars as the
messiness is expected to be highly varied and unpredictable. In our work, we propose an
action-driven approach with a progressive layout scheme, which we call a scene evolution.
Furthermore, we believe that the data source ought to come from images since so far, only
images possess the richness and variety to allow the synthesis of truly messy scenes.

The method we have presented only represents a first attempt at executing the above
ideas. Yet, the action model we develop and apply, as well as action extraction and learning
from annotated photographs, offers unique features which set our approach apart from
previous works on human- or activity-centric 3D scene modeling [22, 43, 77, 21, 78]. Even
with the various simplifying design choices in our work, comprehensive user study results
positively support the action-driven approach in terms of its generative capabilities and
plausibility of the generated scenes, as compared to human effort and state-of-the-art data-
driven methods. That said, the action-driven approach should only complement and not
replace other scene modeling paradigms. We also reiterate that the success of any data-
driven approach relies heavily on the quantity and quality of its data. What our approach
can accomplish is still limited by having only a handful of action types to work with.

Scene synthesis at two scales. An important lesson from our current pursuit is that
indoor scene generation is inherently a process that ought to operate at two scales. At the
coarse scale, one is concerned with how to layout large furniture pieces such as beds and
sofas. How a human sits or lies on a sofa does not play a major role in its placement in a
room. The layout problem is more suited for a rule-based approach [63], since in reality,
it is mainly guided by design guidelines and functionality considerations. The movements
or arrangements of small, mobile items are naturally tied to human actions. There are
also passive actions such as watching TV, which do not involve moving an object but may
trigger an object insertion. The action-driven approach is best suited for scene synthesis at
such finer granularity level.

In our current implementation, the initial 3D scene is expected to contain large, fixed
furniture pieces, which would serve to initialize applicable actions. However, this assumption
could be lifted if we allow special handling of the first actions when the initial scene is
completely empty. In general, we can allow certain actions to be entirely conditioned on
the scene category. For example, watching TV is always applicable to a living room, empty
or not.

Pattern-driven vs. action-driven. Arranging small objects over a relatively small
workspace such as a shelf or desk is action-driven, but the relevant actions are difficult to
capture and annotate from depth scans [77] or photographs. Since these kinds of arrange-
ments typically exhibit predicable patterns, pattern-driven syntheses have been successful,
where the patterns are rule- or style-based [59] and can be learned from examples [22]. On
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the other hand, messed-up rooms after a party or kids play would hardly share common
statistical properties or reveal predictable patterns. An action-driven, progressive approach
is more befitting to the modeling of such scenes.

Static vs. dynamic action data. Our action model is learned from static photos show-
ing snapshots of human-object and object-object relations. Without capturing dynamic
transitions between actions, we currently assume that the transition probability from one
action to others can be estimated by the correlation between actions; see Equation 4.3. Such
a substitution of transition probabilities by correlations between action models is a limita-
tion which could be lifted if dynamic action data, e.g., video or RGBD motion data [77, 78],
can be utilized to study the transition probabilities. Then the learned model can be adapted
to our action graph to drive the scene evolution.

Technical limitations. The main technical limitations arise from various difficulties in
action learning from photos. Pose recovery from photos is challenging, especially from non-
iconic photos of COCO. Even with manual annotations of joints for 3D pose recovery, the
reconstructed 3D poses still may not be plausible. Similarly, object-human and object-
object spatial relations learned from photos can be inaccurate due to erroneous camera
projections and view angles. That said, these problems have all been intensely studied in
the field of computer vision and there are many available techniques, e.g., those based on
deep learning, that can be applied to alleviate the issues with our current implementation.
Complementary to this, efforts can be made to acquire more meaningful photos which enrich
the action data while facilitating action learning.

Future work. The set of action types we learn and apply in this work were hand-picked
from the COCO database; they are clearly limited. To fully realize the potential of action-
driven scene analysis and synthesis, a lot more action data should be acquired and prepared.
To extend the effort to a much larger scale, action data should ideally be mined first from
large text and image sources in a future pursuit. If we are able to obtain much more
action data with text annotations, then we would not be far from achieving 3D scene scene
evolution from textual instructions [78]. Also, our current object placement scheme can be
enhanced with more advanced geometric and even functional analysis of 3D objects [31]. A
final interesting thought would be to reverse the scene evolution: instead of going forward
in time from an input scene, reconstruct a plausible scene sequence backward in time so
that the sequence would lead to the input scene.
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Figure 4.14: A gallery of our action-driven 3D scene evolution results. The figures and
annotations should be self-explanatory. Sub-scenes enclosed in green ellipses are zoomed in
below the scene sequence for better visualization. Last two rows show how actions involving
laptop or computer use and dining, which were learned from small-scale bedrooms and living
rooms from Microsoft COCO photos, can be transferred to never-seen scene categories such
as a computer lab and a dining hall to create quite a mess.
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Chapter 5

Language-Driven Scene Synthesis

This chapter introduces a novel framework for using natural language to generate and edit
3D indoor scenes. The advantage of natural language editing interfaces is strongest when
performing semantic operations at the sub-scene level, acting on groups of objects. We
learn how to manipulate these sub-scenes by analyzing existing 3D scenes. A semantic
scene graph (SSG) is proposed to represent both the natural language scene description
and the structure of 3D scenes. Our language-driven scene synthesis interactively retrieves
sub-scenes from the database and accommodates the retrieved sub-scenes into the 3D scene-
in-progress based on the SSGs. We conduct studies comparing our approach against both
prior text-to-scene work and artist-made scenes and find that our method significantly
outperforms prior work and is comparable to handmade scenes even when complex natural
sentences are used.

5.1 Introduction

Recent advances in computational design, VR/AR, and robotics are placing an increasing
demand for rich 3D content, especially in indoor environments [88, 91, 32]. While most
efforts on 3D indoor scene modeling have been devoted to high-quality and interactive scene
reconstruction from photographs or depth scans, there has also been a push for more open-
ended, and often user-centric, approaches to synthesize and edit 3D scenes [22, 12, 78, 74, 58],
aiming for improved richness and creativity of the generated content.

Natural language is arguably the most accessible input for content creation. With no
modeling skills or training required, language- or text-driven modeling is fun, open-ended,
and stimulates the imagination. Directly converting languages to 3D scenes has been a long
and on-going pursuit since the pioneering work on WordsEye [17]. To date, most research
has emerged from the natural language processing (NLP) community, e.g., [80, 16, 12],
where the focus has been on mapping explicit scene arrangement languages, e.g., “a bed
with three pillows and a bedside table next to it”, to object arrangements. Clearly, such
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There is a desk with
two monitors.

The desk is messy. Replace the desk and
monitors.

...

Figure 5.1: Our modeling tool uses compact and natural language to generate and edit
3D indoor scenes. Each language command triggers a scene evolution where the user can
choose (marked by a box) from a list of suggested outcomes to alleviate ambiguities in
natural language. One or groups of objects can be inserted, replaced, or re-arranged based
on attributes or relations (e.g., “desk is messy”) specified in the command.

explicit commands can be tedious and unnatural. Moreover, one may argue that precise,
object-level controls are more effectively achieved by direct object manipulation using a
mouse, e.g., to rotate a cup for its logo to face front. On the other hand, scene modifications
at a semi-global or sub-scene scale or those involving changes in group relations (e.g., “make
the tabletop arrangement messy or formal”) represent situations where a language-based
modeling interface can excel.

In this work, we introduce a framework for language-driven modeling of 3D indoor
scenes, which is designed with two objectives in mind. Our foremost objective is to provide
novice users the freedom to use compact natural language commands to generate and edit
a 3D indoor scene. A key to reducing language redundancy and improving the efficiency
of scene modeling is to relieve the user from having to provide explicit commands to affect
every single object, like in most previous works. By strengthening the role of implicit or
common-sense knowledge extracted from existing scene databases, our method supports
generic user language expressions which drive the scene modeling at the sub-scene, rather
than object, scale.

The second objective is to improve both the complexity and realism of the generated
3D scenes. As a scene increases in complexity, it provides increasingly richer spatial and
semantic contexts beyond pairwise object relations [12]. To account for these, we need
to encode and learn more complex object relations, particularly those involving groups of
objects. With this in mind, we enhance existing 3D scene datasets such as SceneNN [32]
with both finer-scale objects and annotations of group relations, e.g., “around”, “aligned”,
“messy”, etc., to support our modeling task.

To accomplish the goals set above, our key idea is to treat language-driven 3D scene
modeling primarily as a combination of two tasks operating at the sub-scene level: language-
driven sub-scene retrieval from a 3D scene database and scene accommodation which merges
an appropriately retrieved sub-scene with the current 3D environment to synthesize a new
3D scene. Playing a central role in our modeling framework is a semantic scene graph
representation which encodes geometric and semantic scene information and serves as the
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bridge between user language commands and scene modeling operations which directly
modify a 3D indoor scene. Specifically, a semantic scene graph is defined by object instances
along with object-level attributes and pairwise, as well as group-wise, object relations. Both
annotated 3D scene data and natural language commands are converted into semantic scene
graphs.

We develop an interactive scene modeling tool which allows the creation of an initial 3D
indoor scene followed by progressive editing to evolve the scene, where all the scene genera-
tion and editing commands are provided in natural languages; see Figure 5.1. Specifically,
at each editing iteration, an input natural language statement is turned into a seman-
tic scene graph to retrieve a suitable sub-scene via graph alignment from the 3D scene
database. The retrieved sub-scene is augmented with additional objects based on the input
text and scene context, and then semantically aligned with the current scene. Finally, a
new scene is synthesized by splicing the augmented sub-scene into the current scene, pos-
sibly triggering appropriate adjustments to the existing scene arrangement. In addition,
our tool also supports scene edits with verb commands, which may trigger, e.g., an object
replacement, as shown in Figure 5.1. Overall, the accommodation of the sub-scene into
the current scene is guided by object co-occurrences and relations learned from 3D scene
databases. Since natural language is inherently imprecise, we develop a suggestive interface
to provide multiple interpretations of user languages so that the user can select one or more
scene options during the modeling process.

Compared to the holistic example-based scene synthesis approach via probabilistic sam-
pling [22] and the fine-grained progressive synthesis by sampling human actions [43, 58] or
executing texts on precise object-level controls [17, 80, 12], our method makes the following
contributions:

• 3D indoor scene synthesis which operates at the sub-scene level and accentuate the
power and utility of language-driven scene modeling on collections of objects.

• A novel semantic scene graph for unifying natural languages and 3D scenes. This
common representation is used for editing 3D scenes by incorporating knowledge about
object compositions present in a 3D scene database.

• Annotation, learning, and application of a relational model, which describes pairwise
and group-wise object relations, for 3D scene analysis and synthesis.

The key impacts of our sub-scene-level “retrieve-and-accommodate” approach to data-
driven scene synthesis are two-fold. First, it improves the efficiency of scene modeling, reduc-
ing language redundancy and allowing scene complexity to increase more quickly. Second,
since the retrieved sub-scenes are from realistically captured and modeled 3D scenes, the
common-sense knowledge and scene semantics that are reflected by the object co-occurrences
and arrangements within these scenes would directly go into the new scene. They do not
need to be reproduced or re-sampled from scratch.
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We show results of our language-driven scene synthesis and evolution, leading to the
generation of realistic 3D indoor scenes with much improved versatility and complexity than
previous methods. We conduct studies comparing our approach against both prior text-to-
scene work and artist-made scenes and find that our method significantly outperforms prior
work and is comparable to handmade scenes even when complex natural sentences are used.

5.2 Related work

There has been a great deal of work in computer graphics and computer vision on 3D indoor
scene modeling, and so far, most efforts have been invested into reconstruction. 3D scene
reconstruction takes as input one or more images or depth scans and aims to reproduce
the captured scene geometry and even semantics. There are surveys on the topic, e.g.,
[90, 79, 100], to name just a few, and most recent works are taking a data-driven approach,
e.g., [47, 82, 104]. In this section, we mainly focus on works most closely related to ours,
i.e., those on 3D scene synthesis where textual inputs are used.

3D indoor scene synthesis. One line of work for 3D scene synthesis focuses on furniture
layout optimization [27, 63, 110] for a given room with a given set of furniture. Example-
based approaches rely on probabilistic reasoning from 3D exemplars and 3D scene databases
to drive the synthesis [22, 43, 21, 78, 74]. A few recent works aim to populate a given 3D
scene with small objects to increase its realism. Majerowicz et al. [60] develop a method to
fill a shelf-like environment based on styles learned from a photograph or a 3D exemplar.
The ClutterPalette by Yu et al. [111] offers an interactive tool to allow a user to insert
and position one object at a time to mess up an otherwise clean scene. As the user clicks
on a region of the scene, the tool suggests a set of suitable objects to insert, where the
suggestions are based on support and co-occurrence relations learned from data. In contrast
to these works, our language-driven scene editing tool follows a pipeline of interpret (from
texts), retrieve and synthesize (from scene databases), and disambiguate (via a suggestive
interface).

In Chapter 4, we introduce a framework for action-driven 3D scene evolution [58], which
progressively alters a scene by object placements necessitated by human actions. We learn
action models from annotated photographs and probabilistically sample a sequence of ac-
tions conditioned on scene contexts to evolve a scene. While the actions applied in there
are labelled textually, e.g., “group dining” or “use laptop”, and the texts may not explic-
itly describe object presence or placement, the action texts themselves are pre-determined
(only 8 action types) with each manually bound to an appropriate class of scene contexts
retrieved from the photos. In contrast, this work aims to learn a mapping between an im-
mensely richer text corpus to object perturbation. Furthermore, none of existing works have

80



considered learning, applying, or adjusting object group relations, e.g., “messy”, “aligned”,
etc.

There is a slight resemblance between the group actions supported in Chapter 4 and our
group relation model here. For example, applying the action “group dining on table while
sitting” would trigger the insertion of a group of objects into a scene, while in our language-
driven scene synthesis framework, the object relations and placements would have to be
more explicitly specified by a language command. On the other hand, all scene affections
in the action-driven scene evolution framework must be executed through human actions.
For example, “making the table clean” and “moving the chairs apart from table” are well-
supported by our synthesis tool through group relations, but would be quite involved to
realize by the action-driven approach; it would have to capture and learn actions involving
humans tidying up a table or moving chairs.

Text2Scene. One of the earliest systems for text-driven 3D scene synthesis is Words-
Eye [17]. This work, along with other follow-ups [80, 16], is capable of generating 3D scenes
directly from natural language descriptions, but rely on manual mapping between language
and object placements in a scene. The rigidity of the mapping forces the users to issue
unnatural commands, e.g., “the chair is three feet to the north of the window”. More re-
cently, Zitnick et al. [118] learn visual interpretation of sentences by focusing on mapping
visual features to semantic phrases extracted from the sentences, where the phrases describe
binary relations that are either spatial (e.g., “Mike is after Jen”) or semantic (e.g., “Alice
wants the ball”). However, the generated scenes are two-dimensional, composed of 2D clip
art elements. Also relevant is the recent work by Savva et al. [78], which is able to convert
single-sentence descriptions (e.g., “He is lying on the couch” or “He is sitting in bed and
using a laptop”) into scene prototypes which depict simple human-object interactions.

A series of papers by Chang et al. have provided improvements over the early systems.
The key improvement [11, 12] was the utilization of spatial knowledge, learned from 3D
scene data, to better constrain scene generations by unstated facts or common sense. The
first work [11] also allowed interactivity, but with object movements directly controlled by
the user. The more recent improvement [8] is on lexical grouding of textual terms to 3D
model references, i.e., on selecting more appropriate objects, by combining a rule-based
model [12] and lexical grounding learned from user annotation of 3D scenes. In their latest
paper [9], improvements were made mainly on the UI side; the technical core on text parsing
and Text2Scene generation remain the same as [12].

The languages supported by all of these systems are explicit about object presence,
but possibly implicit about object spatial relations. In our work, we allow both to be
implicit and enable scene annotation, retrieval, and synthesis at the sub-scene level, with
the additional consideration of group relations. Moreover, in previous works, the learned
spatial knowledge is quite basic, e.g., only binary object relations [118, 11, 12]. In our work,
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Sub-Scenes

Relational Models

Scene Database There is a TV in 
front of the sofa

Initial Scene

…

A messy coffee table 
is in front of the sofa

More Sentences

Synthesized Scene

Object node

Relationship node

Semantic Scene Graph

Figure 5.2: An overview of our language-driven scene evolution.

we learn and employ richer scene contexts for scene synthesis by setting up and utilizing a
richer data source.

Robotics. To control a robot with textual commands is one of the central problems in
robotics, e.g., [28, 92, 64]. Rather than learning to map language to object/scene arrange-
ments, as for Text2Scene, the key problem in robotics is to map texts to robot motions, as
well as robot-object interactions. However, both problems and their solutions share com-
monalities, including the need to utilize both rule-based models and data-driven learning of
spatial and semantic relations, as well as the exploitation of common sense knowledge [92]
to incorporate unstated facts.

Scene graphs. Fisher et al. [23] represent 3D scenes as object graphs with edges denot-
ing pairwise semantic relationships, then use graph kernels to estimate scene similarity. In
Chapter 3, we represent a 3D indoor scene by a graph of its constituent objects and detect
focal points over a heterogeneous collection of 3D indoor scenes as representative sub-scenes.
These focal points enable part-in-whole sub-scene retrievals and scene exploration, which
could be adapted for our task. However, the object relations encoded in the scene graphs for
focal extraction only include binary support, proximity, and symmetry groups. We convert
natural language into a semantic scene graph representation that uses both pairwise rela-
tionships and multi-object relation annotations. We use partial graph matching to retrieve
and align the query graph against a scene database, and use the retrieved environments for
scene editing tasks.

5.3 Overview

Our overall framework for language-driven 3D scene evolution is composed of several com-
ponents: 3D scene datasets serving as the knowledge base for scene processing, natural lan-
guage processing which turns language commands to scene-related descriptions, and scene
editing via language-driven synthesis; see an overview in 5.2. All of these components are
strongly tied to a Semantic Scene Graph (SSG), the core data structure in our framework,
as shown in Figure 5.3.

82



Semantic scene graph. The semantic scene graphs (SSG) encode the objects, as well
as their attributes and relationships in a graph. By modeling both 3D scenes and text
commands as semantic scene graphs, this uniform representation enables us to apply the
edit specified by the command to the input 3D scene and update the scene with the help
of the dataset.

3D scene dataset processing. We collect hundreds of annotated 3D scenes as the ex-
emplars for scene editing. We construct the semantic scene graph for each 3D scene in
the dataset. For later scene editing, we also learn relational models from all 3D scenes in
the dataset by modeling the object co-occurrence and relative distribution. This database
preprocessing step is executed only once.

Natural language processing. Our system evolves the scene with a sequence of natural
language commands. Each command sentence can either specify a scene edit operation
(e.g. “put plates on the table”) or describe the changed parts of the scene after editing
(e.g. “there are two plates on the table.”). The language processing module transforms
each sentence into a canonical semantic scene graph representation. For this purpose, we
first extract the command and associated scene entities (i.e. objects, their attributes, and
their relationships) from the sentence and then convert the command and entities into a
scene semantic graph.

Language-driven scene synthesis. We edit the input scene according to the SSG parsed
from natural language. If the language refers to a scene edit, we directly manipulate the
target objects with the specified edit operations. Otherwise, we use the SSG of the input
text to search the scene dataset and find a set of 3D sub-scene exemplars that best match
the scene described in the text. We then update the SSG of the retrieved scene with the
SSG of the input text and align the result SSG to the SSG of the input scene. After that,
we insert new objects described in text into the input scene. The location of the new object
is determined by the surrounding objects in the scene and the relational model learned from
the scene database.

5.4 Semantic scene representation

To enable matching between a text description and a 3D indoor scene, we employ Semantic
Scene Graphs (SSG), a semantic scene representation which contains rich information about
objects, as well as their attributes and relationships. Both 3D scenes and natural language
descriptions of scenes are converted into this uniform scene representation through scene
processing (Section 5.5) and natural language processing (Section 5.6).

A semantic scene graph is an undirected graph with labeled edges and two node types:
object nodes and relationship nodes. Object nodes represent objects in the scene and may
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Figure 5.3: The semantic scene graph for the sentence “The round dining table is surrounded
by three chairs and there is a flower vase on top of the table.”

be annotated with a list of per-object attributes (e.g. “antique”, “wooden”). Relationship
nodes represent a specific instance of a relationship between two or more objects (e.g. “to
the left of”, “on each side of”, “around”). Each edge connects an object node to a relation-
ship node and is labeled with the type of connection between the object and relationship.
Figure 5.3 shows an example of an SSG. Each relationship type has a pre-defined set of
possible edge labels. Each instance of a relationship will have its own relationship node. In
the rest of this chapter, edge labels are not shown for the simplicity of illustration.

Group relations may represent both spatial abstractions (“surrounded by”) as well as ab-
stractions over the object arrangement or composition (“messy”, “organized”). This allows
the SSG representation to capture many different ways that language encodes information
about 3D environments and facilitates comparisons between scenes and natural language
sentences.

5.5 3D scene processing

Our scene databases include 133 3D scenes from SceneSynth [22] and 80 scenes modeled
from the real-world SceneNN dataset [32]. For each scene, we build a semantic scene graph
to encode the object relationships. For each type of pairwise or group relationship, a
relational model encoding object co-occurrences and relative distributions is learned from
the database.

5.5.1 Database preparation

To enable semantic matching of objects between natural language and 3D models, consistent
and meaningful semantic labels need to be annotated on each of the database models. We
use annotations from ShapeNetSem [76, 10] for object labels such as category, attributes
and front orientation. Each real-world scan from the SceneNN dataset is also converted
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Figure 5.4: A database scene annotated with group relationships. Each object in blue
corresponds to the anchor object in one relation group; other objects in other color are
the active objects annotated for the corresponding group: yellow, orange - organized; red -
messy, disorganized; magenta - casual. Note that yellow and orange objects belong to two
independent organized group; the group of red objects are annotated with two types.

into a synthetic scene to facilitate the learning process. It is done by retrieving the best
match 3D model from SceneSynth using the object tag in SceneNN.

Unlike previous methods which focus on pairwise relationships, we also consider group
relationships, which enable more complex text to scene processing. We augment the scenes
with high-level group relationships by annotating sub-scenes with semantic labels on corre-
sponding objects for scenes in SceneSynth and SceneNN. In our current work, six high-level
group relationship types including messy, clean, organized, disorganized, formal, causal
and two spatial group relationships, around, aligned are considered (see Figure 5.4). These
group relationships are extracted from a set of sentences that people used to describe the
indoor environments (Section 5.6.3). As some relationships such as messy and disorganized
have similar arrangements in the scene, we annotate the such groups with multiple types
to provide more instances for each group.

5.5.2 Semantic graph from scene

To build the semantic graph, we first build an object node for each object in the scene
and save its category as a node label. We also encode enriched object annotations from
ShapeNetSem as node attributes to describe the refined properties of an object. Attributes
may refer to many different properties of an object, including shape (ex. “round”, “square”),
color, material, or usage (“dining”, “study”), which could increase the accuracy and control
for retrieval of specific object instances as studied in Chang et al. [8].
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(-0.1, 0.8, -0.5, 0.9)

(0, -0.3, 0.5, 0.1)

X (right)
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Z (up)

Figure 5.5: (a) a scene with two desks and a sofa annotated with adjusted object-centric
frame: front (green), right (cyan); up is same as the scene’s up and is not shown here; (b)
position (red dot) and orientation (green arrow) of chair and monitor in the frame originated
at the center of the desk; relative position is normalized by desk’s bounding box size and
orientation is normalized by pi, and together they are represented as (x, y, z, θ).

Next, we need to extract the relationships between objects and encode them into the
graph. We use the similar approach as in [12] to extract a set of pre-defined spatial relations
by examining arrangements of the bounding boxes of two objects. This list of spatial
relations include: on (vertical support), on left, on right, on center, under, left side, right
side, front, back, near.

As spatial relations (such as “left side” and “front”) are ambiguous when using different
reference frames, previous works [11, 12] use a view-centric coordinate frame to extract
and apply such relationships. Unlike them, we employ an object-centric reference frame to
extract spatial relationships between objects. This allows us to directly extract and retrieve
view-oblivious object relationships from database scenes for future language-driven object
layout. For each object, we first define a coordinate frame based on its front facing direction.
Then, we adjust this object-centric frame based on the human-centric frame, in which the
object would be interacted with by human (Figure 5.5(a)). Given a pair of objects, we
define one object as the anchor object and the other as the active object, and record the
relative position and orientation of the active object in anchor’s frame for future learning
(Figure 5.5(b)).

For each relation (pairwise or group), we create a relation node and connect it with the
related objects. Labels are added to the edges based on whether the connected object is an
anchor or active object. Unlike previous approaches that encode relations as edge labels, we
add relation nodes to the semantic graph, which facilitates representing group relationships

86



more clearly, as all involved objects in a group relation will be linked to just one relation
node.

5.5.3 Relational model

Given the scene database, we learn a relational model to encode object relationships (pair-
wise or group) based on a text description. The relational model contains an arrangement
model A, which records the spatial distribution of objects w.r.t the anchor object, and an
object occurrence model O, which describes the occurrence of individual objects and the
co-occurrence of object pairs in a group relationship.

Given an object pair, we define the score of the pairwise arrangement model as

A(oact, oanchor, r) = P(x, y, z, θ), (5.1)

where oact is the active object, oanchor the anchor object, and r the relationship between
them. P(x, y, z, θ) is the probability distribution of relative position [x, y, z] and θ the orien-
tation between the active object and the anchor object. We first assume each arrangement
model to be a Gaussian mixture and learn the parameters from observations in the database
scenes similar to Fisher et al. [22].

As for some relations, observations of certain object categories may be limited and cannot
be fitted with reliable distributions (e.g., a stapler on the desk), we record all observed
(x, y, z, θ) tuples in the corresponding arrangement model when the number of observations
is less than 15. In this case, the discrete arrangement probability for a new data point is
defined as follows: P = 1 if the point is close to any saved observation within a certain
threshold (5 cm for the relative position and 15° for the relative orientation), otherwise
P = 0.

For a group relationship, we first define the occurrence model which characterizes the
occurrence probability of an object in a group as

O(omi , r) = C(omi , r)/C(s, r), (5.2)

where C(omi , r) is the number of scene s annotated with relationship r that are observed
with m instances of oi. C(s, r) is the total number of scenes annotated with r. We also
compute the co-occurrence probability of an object pair in a group using

O(omi , onj , r) =
C(omi , onj , r)

max{C(omi , r), C(oni , r))}
, (5.3)

where C(omi , onj , r) is the observation count of two objects with specified instance numbers
co-occur in a group with relationship r.
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Figure 5.6: An example of learned group relational model (desk, messy): (a) occurrence
probability of active objects; (b) arrangement of cellphone on desk; as the observation
number is not enough to fit a good distribution, we store all observations and use the
discrete arrangement probability for placement of cellphone.

The arrangement model for a group relationship is represented as the sum of weighted
pairwise arrangement scores:

A(O, r) =
∑

oi,oj∈O
ωA(oi, oj , r), (5.4)

where O is the set of objects in the group; ω is the weight for the corresponding pairwise
model A(oi, oj , r), which equals to 1, if one object in the pair is the anchor; otherwise ω
is set to O(oi, oj , r), i.e., the co-occurrence probability of object instance oi and oj in the
group. Figure 5.6 shows a learned model for a group relationship.

Relational model similarity. Some object categories do not have enough observations
to learn a good distribution model. To enrich placements of such objects, we define the
similarity between relational models and sample from similar relational models to find
additional placements for an object when needed. For any two pairwise relational model
with the same relation r, their similarity is defined similarly to the graph kernel in Fisher
et al. [23]. Specifically, we define

Sim(Ao,Ao′) = k(oanchor, o
′
anchor, r)k(oact, o

′
act, r), (5.5)

where Ao is short for A(oact, oanchor, r) and Ao′ is defined similarly; k(·, ·, r) is the node
kernel of object pair with relationship r:

k(o, o′, r) = 0.5δcat(o, o′) + 0.5kgeo(o, o′, r), (5.6)

here δcat(o, o′) is a Dirac delta function which returns 1 if object o and o′ are in the same
category and 0 otherwise; kgeo(o, o′, r) encodes the similarity of their geometry features

88



(a) (b)

(c) (d)

Query Sim
0.85

Sim
0.81

Sim
0.78

Figure 5.7: a query pairwise relational model (a) A(bowl, desk, on) and three retrieved
models (b) A(bowl, table, on) (c) A(bowl, counter, on) (d) A(bottle, desk, on) ranked by the
relation similarity.

including elevation to floor, bounding box height and volume. Figure 5.7 shows some
similar relational models retrieved from the database using the query.

Relative relation priors. When generating scenes based on language, object placements
must satisfy the explicit relations that are specified by the input sentence. Moreover, as
there might be objects already in the scene, implicit relations imposed by existing objects
must also be satisfied when placing a new object. Therefore, in addition to the specific
pairwise or group relations, we also learn the relative relations, which encode arrangements
between all pairs of objects in the dataset to provide prior knowledge of implicit constraints
for object placements. The relative relation model is represented as I and defined similar
to Equation 5.1, but without the specific relationship constraint r. The relative relation
priors and the specified relational models are jointly used to provide plausible constraints
when placing new objects (Section 5.7.2).

5.6 Natural language processing

People use many types of language to interact with scenes. Sentences such as “there are
three plates on the table” are descriptive, indicating the way the user desires the scene to
be. On the other hand, a sentence such as “put three plates on the table” are commands,
indicating changes the program should make to the scene. In both cases, we attempt to
transform the natural language input into an equivalent semantic scene graph as detailed
in Section 5.4. Sometimes it is not be possible to represent a command as a scene graph;

89



Figure 5.8: An example dependency parse using “Enhanced++ Dependencies” from
Stanford CoreNLP. VB=verb, JJ=adjective, NN(S)=(plural) noun, IN=preposition,
DT=determiner

ex. “remove the plates from the table”. We represent such sentences as scene graphs with
verb annotations that connect to entities in the graph.

5.6.1 Text parsing

We use the Stanford CoreNLP framework [61] to perform part-of-speech tagging and convert
input statements into a dependency tree. This dependency tree assigns a parent token and
annotation label to each token in the sentence; an example is shown in Figure 5.8. Parsing
natural sentences is an inherently ambiguous process; reported on-corpus part-of-speech
accuracy is 97% and dependency parsing accuracy is 91%. In practice we found our parsing
accuracy to be lower as our corpus is dissimilar from the newspaper articles the Stanford
CoreNLP model was trained on.

5.6.2 Entity-command representation

We seek to convert the low-level dependency representation shown in Figure 5.8 into a list
of entities annotated with attributes and relationships, as well as a list of command verbs
which operate over these entities. We call this the entity-command representation of the
sentence. We use the term entity as opposed to object for cases where language refers to
abstractions over groups of objects, ex. “the seating arrangement”.

A scene entity consists of the following:

• Category — the base noun used to describe the object. Ex. “table”, “plate”.
• Attributes — a list of attributes, each of which may have a set of modifier words.

Ex. “modern”, “blue (very, dark)”.
• Count — either an integer representing the number of entities in a group, or a

qualitative descriptor. Ex. “many”, “some”.
• Relationships — a set of (string, entity) pairs that describe a connection to another

specific entity in the sentence. Ex. “on:desk”, “left-of:keyboard”.
• Determiners — a list of determiners such as “a”, “another”, “the”, “each”. These

are useful for estimating object binding (Section 5.7.2).

A command verb is defined by the following:
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Figure 5.9: The sentence “Move the chairs around the dining table further apart and transfer
some of the books on the desk to a table” in our entity-command representation.

• Base verb — the base verb used to describe the command. Ex. “move”, “rearrange”.
• Attributes — a list of attributes, each of which may have a set of modifier words.

Ex. “closer”, “dirty (more)”.
• Targets — a list of (string, entity) pairs that represent different types of connections

to specific entities. Ex. “direct object:laptop”, “onto:table”.

Figure 5.9 shows an example of this representation. At this stage, we only extract all
explicitly specified information and do not make use of implied relationships, such as “there
is a mouse to the left of the keyboard” implying the keyboard is to the right of the mouse.

Entity and command extraction. We take all nouns in the sentence to be entities
unless one of the following conditions is met: the noun is in a compound dependency
relationship with another noun (ex. “computer” in “computer desk”); the noun is an ab-
stract concept (ex. “addition”, “appeal”); the noun represents a spatial region (ex. “right”,
“side”). We take all verbs in base form to be commands.

Coreference. To dereference pronouns, we use the coreference information obtained from
the CoreNLP framework. This assists with sentences such as “Add a dining room table and
put plates on top of it”, where we will not create a new entity called “it”. However, we do
not use coreference for non-pronoun scenarios such as the two table entities in Figure 5.9. In
this case, it is possible that the two tables refer to different tables in the scene, and we will
resolve this ambiguity when we align entities to objects in the user’s scene (Section 5.7.2).
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Figure 5.10: A pattern matching example using spatial nouns. The “in center of:table”
relationship will be recorded for the vase entity.

5.6.3 Pattern matching

After determining the seed tokens for all scene entities and commands, we use pattern
matching over the dependency parse to assign all other properties. For some dependencies,
this pattern matching is very simple; for example, amod(noun : A, adjective : B) assigns
token B as either an attribute or a count of the entity seeded at A, if one exists (see
Figure 5.8 for an example). When pattern matching, we augment the standard parts of
speech used by our dependency parser with four special classes that are important for scene
understanding:

• Spatial nouns — Spatial regions relative to entities. Ex. “right”, “center”, “side”
• Counting adjectives — Adjectives representing object count or general qualifiers.

Ex. ‘all”, “many”
• Group nouns — Nouns that embody special meaning over a collection of objects.

Ex. “stack”, “arrangement”
• Adjectival verbs — Verbs whose effect can be modeled as an attribute modification

over the direct object. Ex. “clean”, “brighten”

An example of a more complicated pattern involving spatial nouns is shown in Figure 5.10.
To build our pattern matching database, we collected a set of twenty photographs of

complex indoor environments and distributed them among ten different participants. One
group was asked to describe the scene in such a way that another participant could recon-
struct the important properties of the scene. Another group was told to provide a set of
instructions for building the scene starting from an empty room, encouraging the use of
command verbs. The participants were not aware that the sentences would be parsed by a
computer program, encouraging the use of a wide range of language constructs.
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Figure 5.11: Entity-command representation of three sentences representing the same un-
derlying concept. We define the descriptive form, (a), to be canonical and transform (b)
and (c) into (a) by group noun transformation and verb application, respectively.

In total we acquired 170 sentences in this way. We used the dependency parse from
100 such sentences to build our pattern matching database such that our system was able
to correctly annotate all entities and commands in these training sentences (we skipped
parts of sentences where the dependency parser failed to produce a correct parse tree). The
remaining 70 sentences were reserved as a test set; the evaluation on these sentences is in
Section 5.8.

5.6.4 Canonical entity-command representation

For a given sentence, assuming a correct parse there is a single corresponding entity-
command representation. However, the same scene editing concept can be expressed in
many different ways, resulting in different representations; see Figure 5.11 for an example.
We define the descriptive form, which minimizes the number of commands and entities, to
be canonical and when possible transform our input entity-command representation into the
descriptive form. These transforms are also executed via a set of pattern matching rules.
One such pattern detects group nouns and transforms them into adjectival form, transfer-
ring all relationships on the group to the compositional entity (Figure 5.11(b)). Another
pattern detects adjectival verbs, converts them into adjective form, and applies this as an
attribute to all targeted entities, also transferring any command targets to relationships on
the direct object (Figure 5.11(c)). We also define transform rules for verbs such as “put”,
“place”, and “add” that do not imbue any attributes on the targeted objects.

Not all commands can be applied as a graph transform. For commands such as “delete
all the chairs around the table” or “rotate the monitor 90 degrees”, we leave these commands
unchanged and use specialized functions to execute them on the scene (or inform the user
that the command was not understood.)

5.6.5 Conversion to a semantic scene graph

Our entity-command representation transforms easily into a semantic scene graph as defined
in Section 5.4.
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Base noun to object category. Our model database uses a fixed set of object categories,
and we start by mapping the base noun for each entity into a corresponding object category.
We use equivalence sets derived from WordNet1. We discard entities that do not map to a
category in our model database. Attributes and determiners are added as annotations to
the corresponding object nodes.

Entity counts. When the ECR indicates multiple copies of an object exist, we instan-
tiate a new object node in the SSG for each object instance. For integer counts, this is
straightforward. For imprecise counts such as “some” and “many”, we first obtain a fre-
quency histogram for each object category by examining the scene database and counting
the number of occurrences of 2 or more instance of the category. For each counting mod-
ifier, we use this distribution to obtain a lower and upper bound on the count implied by
this modifier-category pair, then sample uniformly from this distribution. For example,
“few” samples between the 0th and 25th percentiles, “some” between the 10th and 50th
percentiles, and “many” between the 50th and 100th percentiles. Plural nouns without a
modifier (ex. “there are chairs around the table”) are taken to have an implied “some” mod-
ifier. Relationships, attributes, and determiners are duplicated across each new instance of
an object.

Qualifiers. Some qualifiers such as “each” and “all” imply the presence of multiple ob-
ject nodes, but are left as qualifiers over a single object node until the SSG is grounded
(Section 5.7.2).

Relationships. Relationships in the ECR transfer directly into relationship nodes in the
SSG. The edge label is determined by the directionality of the relationship in the ECR.
Relationships that support multiple objects are grouped together into a single relationship
node in the SSG; for example “the table is surrounded by two benches and some chairs”
will create one “surrounded by” relationship node with appropriate edge labels shown in
Figure 5.3.

5.7 Language-driven scene editing

Given a semantic scene graph constructed from an input sentence (Text-SSG, noted as Tg),
our system has two modes for evolving the scene given by the user (User-SSG, noted as
Ug). For graphs without a verb node (Figure 5.12(b)), our system starts by aligning Tg
with semantic scene graphs of the database scenes (DB-SSG, noted as Dg) and finds a
subgraph (Sub-SSG, noted as Sg) that best matches the given sentence (Figure 5.12(c)).
Unaligned nodes from the sentence are added to Sg as synthesized nodes. For each updated

1http://wordnet.princeton.edu
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Figure 5.12: (a) an input scene and its graph Ug; (b) an input text and its graph Tg; (c)
a retrieved database scene and Dg using the text with aligned nodes shown in blue; (d) a
subscene Sg extracted from Dg with synthesized nodes (in orange) and nodes enriched by
context (in yellow); desk is in red since it is aligned to the desk in (a); (d) updated scene by
transforming objects from the subscene to current scene using desk as the anchor object.

Sg, we align and bind its nodes to the semantic scene graph of the user’s current scene and
insert unaligned objects to current scene based on their relationship to the aligned objects
(Figure 5.12(d, e)). For graphs with verb nodes, we directly align their object nodes to the
objects in current scene, and execute the scene editing functions specified by the verb. By
repeating this process, complex and realistic scenes can be generated by using a sequence
of sentences.

5.7.1 Sub-scene retrieval and augmentation

Our goal is to extend the current scene by the obtained set of sub-scenes as well as the spec-
ified relationships in the text. One way to generate a candidate sub-scene is to synthesize it
with object distributions learned from a 3D scene database (e.g. as proposed in Text2Scene
[12]). However, synthesizing complex scenes by explicitly specifying each object is tedious
due to the number of objects and the inherent ambiguity of language. To overcome these
limitations, we employ the scene context from already existing scenes. We retrieve related
sub-scenes by aligning the Tg to each Dg from our scene database. The output is a list of
Sg ordered by the matching score to the Tg.

Alignment metric. A node in the Tg represents an object or a relationship that the user
explicitly wants to be present in the intended scene. We align these nodes with the nodes
of every Dg to find the matches that best correspond to the candidate sub-scenes (blue
nodes in Figure 5.12(c)). A node in the Dg can only be aligned with one node in Tg, while
already aligned nodes in Dg will be skipped. An object node is aligned when its category
and associated attribute labels are all matched, and a pairwise relation node is aligned when
its type and two connected object nodes as well as the edge labels are matched. For a group
relation node, since the text may only mention the anchor object to represent a group, e.g.,
a messy table, we set the node to be aligned when its type and connected anchor object are
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matched. Ideally, an exact match is expected from the database. However, it is more likely
that some nodes of the Tg will not be aligned properly. To find the best match for a given
graph, we rank the alignment based on following metric:

Score(Tg,Dg) =
∑

Ni∈Tg ,Nj∈Dg
M(Ni, Nj). (5.7)

Here Ni and Nj are the nodes from Tg and Dg, respectively; M(Ni, Nj) equals to 1 if Ni

and Nj is aligned, and 0 otherwise.

Language-driven graph augmentation. As the database is unlikely to store a Sg ex-
actly as specified by the given text, some nodes in Tg may be unaligned because an object
instance is missing, or some relationships are not satisfied by the database scene. Since
every node from the input text is critical to produce the intended scene, we synthesize
missing nodes in the subgraph to ensure exact alignment to the given text. New object
or relation nodes are added to the original Sg so that each of them is matched with an
unaligned node in Tg. Next, we link the synthesized nodes to existing ones according to the
edge connections specified in Tg. By now, we get a Sg (the graph without the yellow nodes
and related edges in Figure 5.12(d)) with all nodes and edges exactly aligned to the Tg.
Moreover, as the group relation node is only aligned based on the anchor object, we further
synthesize nodes for active objects in the group based on the occurrence and co-occurrence
model, and add their connections to the anchor object. Since a synthesized object node
does not correspond to a concrete object instance, we use the same object if an object with
same category appears in current scene, otherwise we randomly sample an object from the
database according to its category.

Enriching Sg with scene context. Natural language does not conclusively describe
objects and their relationships. Moreover, it is challenging to produce complex scenes and
evolved object relationships by only specifying them with text. To enable the generation of
scenes with a high level of detail and complexity, we exploit the stored scene context from
the scene database to enrich the sub-scenes defined by the input text. Similar to Chang et
al. [12], we use the scenes in the database to learn the support hierarchy of objects. Knowing
about the support relationships can be used as a prior; e.g., if the most likely support parent
of an object node is not present in a retrieved Sg, we find its parent node in the original Dg
and add related nodes to the subgraph. Moreover, we incorporate more scene context to
enrich sub-scenes by introducing relevant objects based on their co-occurrence probability to
the initial objects encoded in the Sg. The co-occurrence probability of two object categories
is defined in Equation 5.3, while the relationship r here means the object is supported by
a parent object op. Objects with co-occurrence probability larger than the context control
parameter α will be added to the subgraph.
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5.7.2 Sub-scene accommodation

A Sg represents a subscene retrieved based on the input text. To edit a given scene, we
further bind Sg to Ug (the scene the user is editing) by first merging the two graphs and
then updating the scene layout accordingly.

Graph alignment and merging. During the scene evolution, sentences specified by the
user commonly contain objects that already existing in the scene. For example, given the
input “There is a desk to the right of the bed”, a bed might already be in the scene. Such
objects could be used as anchors for graph alignment and merging. Specifically, we align Sg
and Ug using the similar way of aligning Tg and Dg (Section 5.7.1), but with consideration
of determiners extracted from Tg of an object. Besides the category, two object nodes
are aligned when the corresponding determiner of the object is “the”, with 50% likelihood
if the determiner is absent or “a”, and are never aligned if the determiner is “another”.
Then we merge the Sg to Ug by using the aligned object node in Ug as anchor and add all
non-aligned nodes and related edges from Sg to Ug. In the 3D scene, object instances and
their arrangements in the original Ug will be kept; objects corresponding to newly added
nodes are inserted into the current scene, while their relationships are resolved by layout
adjustment in next stage.

Layout adjustment. Newly inserted objects come with positions as they are stored in
the original database scenes. Therefore, we need to adjust their location to satisfy all
relationships encoded in the updated Ug. We compute a transformation matrix to align the
anchor object in Sg and its correspondent in the Ug, and set it as the initial transformation
matrix for new objects. Since the anchor object and its correspondent may have different
geometric features, applying the initial transformation to the new objects is likely to cause
artifacts, e.g., intersection, object floating and implausible orientation.

We refine the layout of an object based on its specified relationship to the anchor object,
as well as its implicit relations to other existing objects in the scene. For an object involved
in a pairwise relationship, we define the layout score as follows:

Score(o) = L(o) · H(o) · R(o). (5.8)

Here L(o) is the collision penalty term which returns 0 if o intersects any object in the scene
and 1 otherwise; H(o) is the overhang penalty term defined similar to that in [22] to prevent
o hanging off the edge of a supporting surface. R(o) includes all relation constraints for o:

R(o) = ω
∑
r∈E
Aro + (1− ω)

∑
oi∈Ou

I(o, oi), (5.9)
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where E contains set of explicit relationships from the text and Aro represents the arrange-
ment score for the relationship r of o; Ou is the set of objects in current scene and I(o, oi) is
relative relation prior between o and oi; ω is set to be 0.7 in our current implementation to
weight more on the explicit constraints. Layout scores for group relationships are extended
by summing up the layout score of each object in the group.

Ideally, the placement of an object retrieved from a sub-scene would immediately pro-
duce the maximum layout score. In practice, the object arrangement may already violate
the relation constraints after being aligned to the scene. Therefore, we define a layout
quality threshold for an object based on the observed distribution for the explicit relation
and its relative relations to existing objects. When the initial alignment causes an intersec-
tion or fails to pass the threshold, we optimize the above layout score by hill climbing and
adjusting the layout of the object using the placement that produces the maximum score.
New candidate locations are sampled depending on the distribution learned in the relational
model. A location is blocked from future sampling if the layout score returns 0. In the case
that there is no distribution learned and all observations in the current relational model
have been tested and failed, we sample from the most similar relational models to find more
candidate positions.

For placement of a group, object positions are adjusted in the order based on their level
of support hierarchy and bounding box sizes. Thus, larger objects which provide support to
other objects will be placed first. As the object number keeps increasing during the scene
evolution, there might be no position to place a new object. Similar to the strategy used
in Chapter 4, when the placement of an object fails up to a prescribed threshold, we allow
the layout algorithm to roll back to the previous placed object, modifying its placement in
seeking of a relaxed solution. If an object still cannot be placed after one roll-back step, we
will skip placing this object and return a failure message to the user.

Scene editing by verb commands. If the Tg contains a verb node, we directly align its
related nodes with the current Ug to find anchor and target objects. We define a set of func-
tions based on commonly used verbs for scene modification: Replace(A), Move_to(A,B),
Move_on(A,B), Move_closer(A,B), Move_apart(A,B), Delete(A), Rotate(A, degree),
Scale(A, value) where A is the target object or objects for the verb command, and B is
the anchor object. The effect of these functions is the same as indicated by their names.
Although some of these editing functions can also be performed through a click-and-drag
UI, defining these operations through verb commands allows to more efficiently editing of
groups of objects. For example, replacing the chairs around a table using a normal 3D UI
may involve inserting new instance of chairs, aligning them with each existing chair and
delete the original chairs, which would need a larger number of operations.

98



5.7.3 Suggestive interface

Our system provides a suggestive interface to support two-way communication with a user
working with our system (as shown in Figure 5.1). For each input sentence our system
produces a set of suggestions (set to 5 when producing all results in this chapter). The
user can interactively explore all suggested scenes and choose one she favors most for next
iteration of text to scene generation. When ambiguities exist in input text, the system
returns possible scene arrangements as suggestions. For example, when there are two desks
in the current scene, and the textual command is “put a monitor on the desk”, our system
will return two possible results that the monitor is on either one of the desks.

The suggested scenes satisfy the constraints in the Tg, while they also show possible
variations in terms of objects as well as their arrangement. To rank the scenes shown in
the suggestion list, we define a simple screen space visual similarity metric that compares
pixel-wise color difference among the images rendered from 6 views of the result scenes.
We sort the scenes in the order of their visual dissimilarity from high to low and show the
suggestions to the user. To further improve the variation of the synthesis results, the user
can always use the verb command Replace to change the instance of an existing objects.
The layout of all related objects, e.g., children or neighbor of the changed objects will be
automatically updated using our layout adjustment algorithm.

5.8 Results and evaluation

We first evaluate accuracy of converting natural language into our entity-command repre-
sentation. Then, we present results of our language-driven scene synthesis method, evaluate
its performance, and compare the results to those created by artists and those obtained by
the state-of-the-art text-to-scene generation method of Chang et al. [12].

Entity-command representation evaluation To evaluate the accuracy of our method
for converting natural language into ECR, we generated entity-command representations
for the 70 natural language sentences described in Section 5.6.3. As users generated these
sentences without the expectation that they would be parsed by a computer, they demon-
strate many of the failures of our entity-command representation and evaluating on these
sentences provides a rough lower-bound on the parsing accuracy that can be expected in a
practical system.

Table 5.1 shows the accuracy of ECR conversion across test sentences, broken down by
the token types delineated in Section 5.6. Many token types, such as attributes, counts, and
determiners, are easily parsed. Difficult entities to parse include non-standard compound
phrases such as “chest of drawers”, which produces two objects in our system and results
in hallucinated entities.
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Token type Recalled Missed Hallucinated

Entity category 98% 2% 11%
Entity attribute 100% 0% 0%
Entity count 100% 0% 0%
Entity relationship 76% 24% 18%
Entity determiner 100% 0% 0%
Verb base 84% 16% 11%
Verb attribute 100% 0% 8%
Verb target 85% 15% 23%

Table 5.1: Accuracy of converting natural language sentences into the entity-command
representation. “Recalled” is the percent of ground-truth tokens that are correctly labeled
as the given token. “Missed” are tokens that should have received this label but did not.
“Hallucinated” are the ratio of tokens that are erroneously labeled to be of a particular type.
When a base category/verb is not correctly isolated, tokens bound to them are discarded.

Scene synthesis results. Figure 5.16 shows a gallery of 3D scenes generated by our
method, highlighting the various features offered. Taking advantage of sub-scene level
scene synthesis, group relational models, as well as adding contexts from scene databases,
we are able to achieve a much higher level of language efficiency for scene modeling than all
previous attempts at text2scene generation. For example, a scene with 20 to 30 objects can
be synthesized with only three sentences; see last column of Figure 5.16. More synthesis
results can be found in Figure 5.1.

Parameter and timing. The main tunable parameter in our method is α, which con-
trols the level at which context objects can be introduced to the scene. Throughout our
experiments, unless otherwise noted, we set α = 0.5. Timing-wise, conversion of input lan-
guage to semantic scene graphs is instantaneous. Sub-scene retrieval and synthesis take 1-5
seconds to accomplish (on average) when the output scenes contain about 15 to 20 objects,
respectively.

Verb commands. Verb commands serve as secondary editing options in our scene model-
ing tool to complement synthesis commands realized via sub-scene retrieve-and-accommodate
operations. When a scene needs to be refined by object movements without the need for
object or sub-scene retrieval, as shown in Figure 5.13(b), verb commands are appropriate.
Object replacement is another scenario that is supported by verb commands, as shown in
Figure 5.1 and Figure 5.13(c), allowing the user to more quickly refine the scene.

Comparison to [12]. The key evaluation for our method is whether the generated scenes
are plausible and natural. Similar to previous works [21, 58], we leave such judgments to
human participants, and first compare our results to those generated by the most closely
related and state-of-the-art method of [12]. For the comparison, we used implementation
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(a) (b) (c)

Figure 5.13: Verb commands applied to refine the current scene (a). (b): after “move the
chairs apart from the table”. (c): after applying the command “replace the table”.

provided by the authors and executed it with the same underlying scene databases as our
method.

We set up 10 editing scenarios, each described by three input sentences, with α set to 0
(i.e., no scene contexts). The editing commands cover bedroom, dining room, living room,
and office scenes. Both pairwise and group relations were accounted for. However, since
Chang et al. [12] only model pairwise relations, to ensure a fair comparison and help their
tool obtain the best results, we split specifications of group relations into sets of pairwise
constraints. We further chose the best result from Chang et al. out of five instances run
through their provided implementation.

When applying our method, the first sentence in each editing scenario was used to
generate five suggestions. For the next two sentences, two options are considered when
selecting scenes from suggestions: Our-random corresponds to a random selection and Our-
user corresponds to a user’s selection as the most favourable result. To mitigate possible
ambiguities caused by scene description sentences, we generate two scene variants inde-
pendently for each editing scenario and each method/option: Our-user, Our-random, and
Chang. Hence, there are a total of 20 scenes per method/option.

Our first user study is the Plausibility Test against Chang et al.[12] (PTC). We split the
total of 60 scenes generated for this study into two sets. Each subject is shown three scenes
from the three methods/options at a time. The subjects were asked to give a score from
1 (least favoured) to 5 (most favoured) to each scene based on two criteria: plausibility –
whether the scene is plausible with respect to the given editing command, and naturalness
– whether the scene and its object arrangement appear natural. We gathered feedback from
23 participants, resulting in 46 scores per test scenario per method/option and 460 scores
per method/option.

Figure 5.14 plots the average subject scores and variances for each test scenario. Fig-
ure 5.15(a) plots the overall statistics. As can be seen, our method clearly outperforms
Chang et al. [12] with average scores of 4.14 (Our-random) and 4.48 (Our-user), compared
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Figure 5.14: PTC study results: average plausibility-naturalness scores by subjects for all
10 scene editing scenarios.

to 1.56 for Chang. We attribute this to several improvements we made including our ability
to handle group relations (Section 5.5.3), our transformation into a canonical graph repre-
sentation (Section 5.6.4), and our sub-scene retrieval and alignment pipeline (Figure 5.12).
Interestingly, Our-random is rated only slightly lower than Our-user, suggesting that our
method has a good average performance.

Comparison to artist creations. Our second user study is the Plausibility Test against
Artist (PTA), where we simply replaced the method of Chang et al. [12] by a professional
artist we hired and essentially repeated the PTC study. When the artist created the scenes,
she was given the natural language prompt, the same object database used by our tool, and
was not limited by modeling time. At the end, the artist spent at least five minutes modeling
each scene. Importantly, the artist had total freedom in choosing which objects to add to
the scene, based on the language input, and how to place them using a modeling software.
Hence, the comparison would cover the full spectrum of our scene synthesis method.

Instead of asking the subjects to score scenes, we asked them to vote between a pair of
scenes, one created by the artist and the other an Our-user scene from PTC. The subjects
were asked to vote based on their judgment of plausibility and naturalness of the scenes.
We received feedback from 20 subjects, resulting in 400 subject votes over the 10 editing
scenario since the artist also generated two scene variants per scenario. Figure 5.15(b) (first
column) plots the average percentages of the artist and Our-user results being voted on by
the subjects, respectively. Overall, our method received 48.25% of the votes, which is close
to that of the artist (51.75%), indicating that our method is able to produce results that
are comparable to average human performance.
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Figure 5.15: Average PTC scores and PTA and PTX percentages.

Effect of adding context Our third user study is the Plausibility Test with Context
(PTX), where we aim to evaluate the effect of adding scene contexts to the generated
scenes. In this study, we set the context control parameter α to 0.5. For each query, two
scenes were presented to the subjects, one generated with context added (Our-context) and
the other is an Our-user result from the previous studies, without adding context. Feedback
was received from 25 subjects, who selected for each editing scenario (from the previous
two studies), which of the two scenes was preferred based on plausibility and naturalness,
as before. As shown in Figure 5.15(b) (second column), Our-context scenes were slightly
favoured with 54% of the total votes over all 10 editing scenarios. This validates our belief,
but only weakly, that users tend to prefer more complex scenes (as a result of adding
contexts), but only when the added objects do not violate scene semantics as a result.

5.9 Discussion, limitation, and future work

In this chapter, we present a tool which uses annotated 3D scene databases to support
synthesis and editing of 3D indoor scenes using natural language. In designing such a tool,
we contrast selection versus affection of scene objects, object-level versus patch-level scene
manipulation, and emphasize that in each case, it is the latter option that accentuates the
usefulness of language-driven scene modeling. With direct manipulation over a 3D scene,
e.g., through the use of a mouse, attribute changes typically require more interactions than
object selection, while affection on a group of objects is even more laborious. Language

103



commands, if interpreted and realized properly, can go a long way in saving user effort in
these situations.

Our tool has been developed with the above thinking in mind and it separates itself
from previous attempts at text-driven scene synthesis in several aspects. First, our tool
supports scene editing at the sub-scene level which both accelerates scene evolution and
improves the alignment and unification of natural language commands with 3D scenes.
Second, we learn a relational model which enables change of relations between two or a
group of objects during scene synthesis. Finally, the semantic scene graphs used in our
text-driven scene retrieval and synthesis not only provides a grounding between text and
3D scenes, but also incorporates information about object arrangements and occurrence
from 3D scene databases.

We regard our tool as a preliminary prototype for language-driven and data-driven 3D
scene modeling. The current implementation only supports a limited set of group relations
and a limited classes of commands for language-scene grounding. Enriching both would
require expanded data annotations and language processing capabilities. Also, aside from
learning and retrieving everything from available 3D scene databases, we could also extend
knowledge acquisition to other sources such as ImageNet or KnowledgeNet.

We would also like to explore applying the techniques developed in our work in other
contexts. For example, our scene alignment algorithm may hold the potential to enrich a
set of synthetic scenes by aligning them with real scenes as a way to produce variations.
Ultimately, an intelligent language-to-scene modeling tool should be able to learn and adapt
on-the-fly. Examples of such intelligence include automatic requests for new or additional
scene exemplars, annotations for unknown attributes, or ungrounded textual commands.
With the additional data, the semantic scene graphs and underlying learning mechanism
can be adjusted and enhanced on the fly.

Using natural language to assist creative tasks is a growing field. Many techniques
we have explored in the context of editing scenes with language have applications to other
creative media such as editing images and video. These systems must all answer challenging
questions. How should voice or text input interleave with other input modalities? How do
we deal with uncertainty in understanding the user’s intent or the system’s inability to fully
execute the request? Our work has explored some of these issues in the context of 3D scenes
and believe that language-powered interactive systems will soon be able to significantly lower
the entry barrier for creative tools.
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There is a desk with two monitors, a 
keyboard, and a mouse. 
A cellphone, a headphone and a 
lamp are on the desk. 
Under the desk there is a PC, a 
speaker, and a power socket.

There is an organized computer 
desk.
Next to the desk, there is a file 
cabinet with a printer on top.
A bookshelf with books is to the 
right of the desk. 

There is a couch and two sofa chairs 
in the room.
In front of the couch is a messy 
coffee table. 
In front of the couch, there is a tv 
with two speakers on each side.

There are four chairs around a 
round dining table.
On the table, there is a vase, a 
teapot, and dinner plates.
The table is messy.

There are two desks aligned along 
the wall.
On the desks, there are monitors 
and keyboards.
In front of the desks, there is a sofa 
with two pillows on it.

There is a bed.
Next to the bed, there is a messy 
office desk.
There are books on the bed.
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nightstands on each side.
On each nightstand, there is a lamp.
There is a dresser to the le� of the 
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dresser.
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Figure 5.16: A gallery of our language-driven scene synthesis results. In each row, we
show from left to right: input sentences; an output scene selected from 5 results (α = 0);
another output scene selected from 5 results (α = 0); an output scene with context added
(α = 0.5). In the sentences, highlighted words map to the group relations (green) and some
key determiners (red) that affect the scene binding.
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude this thesis with a summary of the main contributions of our sub-
scene level processing for scene analysis and synthesis. Then, we discuss possible directions
for future work.

6.1 Summary of contributions

In the thesis, we first proposed to use focal points, the representative sub-scenes, for charac-
terizing, comparing and organizing collections of complex indoor scenes. Then we presented
action-driven scene evolution to generate continuously evolving scenes by simulating how
scenes are altered by human actions. Lastly, we introduced the language-driven scene syn-
thesis for using natural languages to generate and edit 3D scenes. Both of the two proposed
scene synthesis systems learned probabilistic models of sub-scenes, enabling efficient gener-
ation of complex 3D indoor scenes.

Mid-level scene analysis. Similar to the mid-level image understanding [89, 19, 44],
the focal-centric scene analysis presented in Chapter 3 could be regarded as mid-level 3D
scene analysis. In contrast to working on the discriminative image regions, we focus on
the substructures of indoor scenes and learn contextually representative focal points by co-
analyzing a scene collection. The focal points provide a novel perspective to understand and
characterize complex and heterogeneous scenes, achieving better results for scene retrieval
comparing to the method that work on the global scene level [22]. New applications such
as scene organization and exploration are also enabled by the focal-based scene similarity.

To extract the representative substructures as focal points, we abstract 3D scenes as
structure graphs and perform an interleaving optimization between frequent graph pattern
mining and scene clustering. The context from scene clustering result is utilized to refine
the focal mining while the refined focal points in turn lead to more compact scene clusters.
The framework we proposed for extracting and applying the focal points are not limited to
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be used for 3D scenes, but can be adapted to analysis of heterogeneous data in other forms,
such as images and texts.

Probabilistic models of sub-scenes. The action model proposed in Chapter 4 and the
relational model proposed in Chapter 5 are both probabilistic models of sub-scenes. As
the probabilistic models are defined as joint distributions of objects, with the increasing
number of objects, the models will become over-complicated and need large amount of data
to train. Comparing to learning a holistic object distribution of a whole scene, learning the
object distributions in sub-scenes requires less training data. The training process is also
much efficient and the learned models are more reliable.

Comparing to the activity model in [21] and the PiGraph [78] which also learn probabilis-
tic models for sub-scenes, our action model is learned from a much richer data source, i.e.,
photographs. To account for the challenge of 3D recovery from 2D, we embed human-object
relationships in a human-centric coordinate frame, recovering possible 3D information from
photographs with the help of reconstructed 3D human poses. We also construct an ac-
tion graph by analyzing the correlation between different action models, so that possible
sequences of plausible actions could be sampled from the graph to drive scene evolution.

Our relational model encodes semantic relationships of two or more objects, inducing a
mapping from natural language to 3D scene arrangements. We are the first to learn object
distributions related to high-level relationships of object groups such as messy, organized.
Applying the relational models for text-to-scene generation reduces the redundancy of nat-
ural language, enabling generation of complex scenes with only a few compact scene editing
commands.

Efficient progressive scene synthesis systems. With the action models and relational
models, the two proposed scene synthesis systems efficiently generate or edit placements
of multiple objects at the sub-scene level, both enriching the complexity of scenes in a
progressive manner. In comparison to scene synthesis systems [22, 12] which sample the
placement of every object in the whole scene from scratch, progressive scene synthesis
systems that operate at the sub-scene level could produce large-scale scenes with much
more complexity.

The action-driven scene evolution is able to automatically generate scenes with numerous
variations due to the different positions where actions are applied and the different order
of the actions. All of the resulting scenes are semantically and functionally meaningful, as
they are inherently corresponding to the applied human actions. In the language-driven
scene synthesis, we “retrieve-and-accommodate” sub-scenes based on the novel Semantic
Scene Graph representation which enables the mapping between natural language and 3D
scenes. Scene semantics from the 3D scene databases are efficiently utilized to generate
complex scenes from language inputs.
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6.2 Future work

This thesis presents frameworks of sub-scene level processing for analysis and synthesis of
3D indoor scenes. In the following, we discuss several possible directions of future work.

Analysis of large-scale online scene repositories. Our focal-centric scene analysis
are evaluated with existing scene databases which consist of hundreds of scenes [22, 107].
The objects in these scenes are well segmented and annotated with semantic labels. It
would be interesting to extend the framework in Chapter 3 to the large-scale online scene
repositories, e.g., 3D Warehouse [1].

The first problem of dealing with the online scenes is the preprocessing, as they often
contain over-segmented object parts whose labels may be missing or inconsistent. Liu et
al. [55] make a first attempt to convert the initial scenes into consistent and semantic scene
graphs, but their approach relies on the supervised learning of scene grammars from the lim-
ited set of annotated scenes. A more robust, precise and unsupervised scene preprocessing
is needed to handle scenes with higher level of details and complexity. The second problem
is to scale up our sub-scene analysis to the large number of online scenes. The interleav-
ing optimization between the frequent subgraph mining and scene clustering may become
slow when the scene number and the heterogeneity of the scene collection increase. A new
coarse-to-fine and parallel processing framework will certainly improve the performance of
focal extraction and scene clustering. The last problem is to design more easy-to-use in-
terfaces for focal-centric scene retrieval and scene database exploration, so that the users
will be able to browse the online scene repositories more efficiently and reduce the time of
searching for their interested scenes.

Learning from more multifaceted training data. The key for data-driven approaches
is the source of data, especially those with rich and semantic annotations. Learning from
more multifaceted training data could improve our models of sub-scenes and lead to more
realistic and complex scene synthesis results.

In Chapter 4, we learn action models of human-object relations from annotated pho-
tographs. The action types are limited to static actions or activities which correspond to
stable object placements relative to the human poses. Our correlation model for comput-
ing the action transition probabilities is only an assumption and a rough simulation to
generate possible action sequences. To fully model the dynamic nature of actions and the
transitions between different actions, action models should be learned from dynamic human
action data, e.g., long-term RGB-D videos of daily human actions. Moreover, the potential
actions and their transitions may also be mined from the vast source of texts.

We utilize existing scene databases [22, 32] to build the relational models and suggest
the candidate sub-scenes to create new scenes in Chapter 5. The SceneNN [32] database
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provides the object arrangements from the real world and complements the SceneSynth
database [22] with furniture-level object distributions. As more easy-to-use scene capture
and annotation tools are created, large-scale richly-annotated scene database such as Scan-
Net [18], which contains thousands of scenes captured from real-world environments, is now
available. Applying the learning framework in Chapter 5 to ScanNet and other similar scene
databases will certainly construct more robust and more sophisticated relational models of
sub-scenes which will in turn help generate more complex scenes.

Extending sub-level processing to other data forms. Our sub-scene level process-
ing frameworks not only could inspire future work in 3D scene processing, but also hold
the potential applications in 3D shape processing and other related fields such as image
understanding and text processing.

Recall that there is an analogy between a 3D shape with the parts and a 3D scene with
the objects. It is a straightforward idea to extend the sub-scene level processing frameworks
presented in this thesis to the substructure level shape processing. The focal-centric anal-
ysis framework could be easily adapted to extract the representative substructures from
a collection of shapes and then organize the shapes based on the focal points. For a 3D
object, an analogy to the human actions we used for scene evolution is the human inter-
action. Discovering the substructures related to semantic human-object interactions and
further exploiting the substructures by learned interactions will improve and motivate more
functional-aware shape synthesis.

Our idea of using focal points to compare and organize complex data could also be
applied to other data forms, such as images and texts. The key of extending our focal-
centric analysis framework to such data is to build the graph representation of the underlying
data, where the nodes represent the interested entities and the edges encode the spatial,
structural or semantic relationships between the nodes. Furthermore, it is possible to extend
our language-driven synthesis framework presented in Chapter 5 to creation and editing
of other digital or visual content, including 3D shapes, images or videos. Data-specific
adaptation will be needed to apply our techniques to build the text-to-content mapping
and execute the “retrieval-and-accommodate” scheme to manipulate the related content.

Finally, this thesis proposed novel frameworks for sub-scene level processing of 3D indoor
scenes. Results have shown that the performance of both scene analysis and scene synthesis
is improved by operating at the sub-scene level. We believe that future developments on
sub-scene level data-driven scene processing will bring us closer to creation of truly realistic
and complex 3D scenes that are readily usable for applications such as 3D games and VR.
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